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AFIT-ENS-13-M-05 

Abstract 
 

 

Obtaining insight into potential vehicle mixtures that will support theater 

distribution, the final leg of military distribution, can be a challenging and 

time-consuming process for United States Transportation Command (USTRANSCOM) 

force flow analysts.  The current process of testing numerous different vehicle mixtures 

until separate simulation tools demonstrate feasibility is iterative and overly burdensome.  

Improving on existing research, a mixed integer programming model was 

developed to allocate specific vehicle types to delivery items, or requirements, in a 

manner that would minimize both operational costs and late deliveries.  This gives insight 

into the types and amounts of vehicles necessary for feasible delivery and identifies 

possible bottlenecks in the physical network.  Further solution post-processing yields 

potential vehicle beddowns which can then be used as approximate baselines for further 

distribution analysis. 

A multimodal, heterogeneous set of vehicles is used to model the pickup and 

delivery of requirements within given time windows.  To ensure large-scale problems do 

not become intractable, precise set notation is utilized within the mixed integer program 

to ensure only necessary variables and constraints are generated.
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A MIXED INTEGER PROGRAMMING MODEL FOR IMPROVING THEATER  

 

DISTRIBUTION FORCE FLOW ANALYSIS 
  
 

I.  Introduction 
 

 

Background  

Although varying facets of warfare have changed considerably throughout the 

history of combat operations, theater distribution has remained an important concept.  In 

fact, Alexander the Great successfully conquered much of the known world in the 4
th

 

century B.C. largely because of his proficiency in supplying his army (Engels, 1978).  

Theater distribution, a principal component of military logistics, is defined as the flow of 

personnel, equipment, and materiel within a given theater as necessitated by the 

geographic combatant commander to support theater missions (Joint Chiefs of Staff, 

2010).  A military force cannot operate in-theater as intended if the war-fighters and their 

required provisions are not in the appropriate place at the necessary time.  Therefore, 

effective theater distribution must be achieved in any military contingency.  

The United States (US) military places great emphasis on the superior distribution 

of troops and materiel.  As such, the core logistic capability of Deployment and 

Distribution is an underpinning of the US military’s doctrine on joint logistics.  This 

doctrinal capability focuses on moving forces, along with their equipment and materiel, 

around the globe while maintaining time deadlines dictated by combatant commanders 

(Joint Chiefs of Staff, 2008).  United States Transportation Command (USTRANSCOM), 
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the unified command responsible for the deployment and distribution of troops and 

equipment, supports this logistic capability with sound planning and execution. 

Joint military distribution is typically carried out in three specific phases, known 

as legs.  The first leg, or intracontinental movement, is the movement of forces and cargo 

from their initial point of origin to a Port of Embarkation (POE).  The first leg typically 

remains within the United States, with troops and cargo departing from unit bases to a 

POE for further movement.  The second leg, intertheater movement, involves movement 

from a POE to an in-theater Port of Debarkation (POD).  This leg usually entails the 

movement of forces and goods from the United States to a specific theater of operations.  

The final leg, known as intratheater movement or theater distribution, occurs when 

personnel and materiel are moved from an in-theater POD to their final delivery 

destination, or Point of Need, within the operating area (Joint Chiefs of Staff, 2010).  

This final leg occurs entirely within the operational theater.  Throughout the distribution 

process, ports (both PODs and POEs) may be either aerial ports or sea ports.  An example 

of how the three legs of distribution work together to deliver goods from origin to theater 

is shown below in Figure 1. 
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(Joint Chiefs of Staff, 2010, p. I2) 

Figure 1.  The Three Legs of Joint Military Distribution 

 

 

 

Military operations are typically planned with an operation plan (OPLAN).  For 

operations requiring the movement of forces, Time Phased Force Deployment Data 

(TPFDD) accompanies the OPLAN.  The TPFDD document details the required 

personnel, equipment, and materiel that must be delivered to support the OPLAN.  Each 

individual item to be distributed is known as a requirement, and TPFDDs list 

considerable information for each individual requirement.  Among other things, 
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requirements in a TPFDD will have their planned origin, POE, POD, final delivery 

destination, and weight all listed.  Additionally, timing information such as different 

pickup and delivery windows are included.  A properly employed TPFDD will ensure 

that all necessary items arrive to the theater in a sequential, phased manner, allowing 

geographic combatant commanders to successfully conduct missions as capabilities 

arrive within the area of operations. 

In a TPFDD, time constraints are planned for all legs of the movement.  However, 

a few specific time-related attributes are of great importance to theater distribution 

planning.  The Earliest Arrival Date (EAD) and Latest Arrival Date (LAD) describe the 

earliest and latest dates in which the stated POD for a requirement can accept the delivery 

of a specific requirement from its POE.  This creates an EAD-LAD delivery window.  

Therefore, each requirement is to arrive at its POD within this window.  Once an item has 

arrived at the POD, it may then begin the final leg of its journey to the final delivery 

destination.  The Required Delivery Date (RDD) is the date in which a requirement 

departing its POD must arrive at its final delivery destination.  Table 1 below illustrates 

what some requirement attributes and information in a TPFDD might look like. 

 

Table 1.  Partial Data from Sample TPFDD 

Requirement POE EAD LAD POD RDD Destination Total Short Tons 

1 FGSL 5 8 TWTH 10 GHOS 300 

2 TWBI 7 10 HSNP 12 BHEL 100 

 

 

 

Another important time constraint is the Commander’s Required Delivery Date 

(CRD).  While not listed in a TPFDD, the CRD is a date beyond the RDD, decided upon 
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by the geographic combatant commander, in which a requirement must have arrived at 

the final delivery destination.  Therefore, while undesirable, delivery after the RDD but 

on or before the CRD can be allowed in modeling to assess late impacts.  (Joint Chiefs of 

Staff, 2011a).   

As part of distribution planning, and in order to ensure successful future military 

movements, USTRANSCOM holds recurring force flow conferences.  At these 

conferences, proposed OPLANs and accompanying TPFDDs are tested against logistical 

capabilities to determine the feasibility of planned actions.  Analysts and planners must 

determine whether or not requirements listed in an OPLAN’s TPFDD can be realistically 

delivered based upon the planned delivery network, assigned transportation vehicles, and 

the timelines for movements.  If analysis shows that the transportation of the required 

equipment and materiel needed to begin and sustain operations cannot be conducted in a 

feasible manner, an iterative process of refining the OPLAN and TPFDD is conducted 

until a satisfactory and feasible operation plan is established (Joint Chiefs of Staff, 2010). 

While USTRANSCOM force flow conferences may examine all three legs of 

military distribution during their analysis, particular attention must be given to theater 

distribution, the intratheater movement between PODs and final destinations.  Firstly, 

theater distribution normally requires a beddown of vehicles within the theater in order to 

sustain delivery to the final destination.  Thus, determining how to allocate requirements 

to vehicles and deciding which vehicles to position at theater locations to support theater 

distribution can be a challenging task.  Secondly, the theater distribution phase is crucial 

to ensuring war-fighters receive their goods and materiel on time.  Timeliness is 

imperative in this last leg as late deliveries could negatively impact military operations 
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and potentially harm US forces.  Movement requirements shipped on-time to the POD are 

useless to troops in combat if they do not also arrive on-time to the theater locations.  

Thus, it is imperative that appropriate analysis is conducted on theater distribution.   

At USTRANSCOM force flow conferences various mobility simulation tools are 

used to find feasible delivery options by examining the transportation networks and assets 

under consideration.  An internal research paper authored by Longhorn & Kovich (2012) 

of USTRANSCOM points out that while these simulation models are helpful in 

conducting theater distribution analysis, they only describe limitations to theater 

distribution without prescribing any potential fixes.  In other words, the simulation tools 

report only on the feasibility or infeasibility of specific transportation plans based upon 

the constraints of the specific network under consideration and the transportation assets 

selected to be utilized within the simulation.  Once limitations or infeasibilities are found, 

no current tool exists to describe an appropriate vehicle mixture that will allow the 

operation to then become feasible.  In fact, it may take many time-consuming “trial and 

error” runs with differing transportation vehicle mixtures until one that supports feasible 

movement is found. 

To address this, Longhorn & Kovich (2012) propose an integer programming 

optimization formulation, known throughout this thesis as the Theater Distribution Model 

(TDM).  The TDM, discussed thoroughly in Chapter II, would prescribe, before 

simulation of the theater distribution phase, a specific multimodal vehicle mixture that is 

needed to successfully deliver the materiel for a specific operation.  Once determined, the 

specific vehicle mixtures would be used as input in the simulation tools as analysts 

continue with distribution analysis.  Because the vehicle mixture solutions drawn from 
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the TDM would demonstrate sufficient transportation assets for the requirements, they 

should yield feasible transportation plans.  Thus, analysts can avoid the iterative, timely 

process of checking for feasibility and adapting as necessary.  Furthermore, by making 

cost changes in the optimization models, analysts can also compare how different policy 

changes would impact theater distribution efforts.  (Interested readers should contact Dr. 

Jeff Weir, AFIT/ENS, at jeffery.weir.2@us.af.mil for information on obtaining the 

Longhorn & Kovich internal research paper). 

Research Purpose and Objectives 

The purpose of this research is to improve contingency planning capabilities at 

USTRANSCOM, specifically for force flow analysis of theater distribution.  At present, 

analysts at USTRANSCOM have no functioning optimization models that dictate, for a 

given operation, a feasible number of vehicles needed to conduct theater distribution in 

an on-time, least-cost method.  Currently, planners initially select a vehicle mixture that 

may or may not yield feasible transportation after analysis.  Next, simulation tools are run 

to examine whether or not that particular predetermined vehicle mixture will allow for 

feasible flow within the network.  If the analysis shows infeasibility, another vehicle 

mixture is tested.   

Because the simulations are descriptive in nature, they do not give insight into 

what types of vehicle mixtures would provide for feasible transportation and because of 

this, potential vehicle mixtures are often selected via “trial and error”.  However, even if 

a particular vehicle mixture is found to yield feasible transportation within the network, 

there is certainly no guarantee that the vehicle mixture is even remotely optimal in terms 

of costs.  This iterative technique of finding vehicle mixtures can be extremely time 

mailto:jeffery.weir.2@us.af.mil
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consuming, requiring hours of simulation every time a new vehicle mixture is tested for 

feasible transportation.  The objective of the proposed TDM is to find on-time, least-cost 

delivery options for all requirements within the TPFDD, detailing on what days different 

types of vehicles should be available for transportation.  However, the TDM has yet to be 

thoroughly tested.  

The first objective of this research is to test the proposed TDM and determine if it 

is capable of finding solutions to large-scale problems, such as those engendered with 

TPFDDs for US military contingencies.  A typical TPFDD may easily contain thousands 

of movement requirements.  Thus, it is important to ensure that any proposed model is 

computationally efficient as problems can grow rapidly in size.   

The second objective of this research is to determine if the TDM optimization 

model adequately matches reality.  That is, the validity of the model must be inspected to 

ensure that it appropriately finds the vehicle mixture necessary for requirements in an 

on-time, least-cost method. 

Thirdly, this research will examine possible changes to the formulation of the 

model.  In particular, the process by which vehicles are allocated to requirements will be 

investigated.   

Lastly, the research will attempt to construct approximate vehicle beddowns that 

would be necessary at each POD based upon the model solutions.  Beddowns may be 

helpful to analysts as they attempt to model the theater distribution portion of movements 

with simulation tools. 

With these objectives in mind, this research intends to save USTRANSCOM 

countless hours of analysis and planning at their force flow conferences.  A functional 
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optimization model for force flow analysis will allow operational planners to quickly find 

feasible vehicle mixtures for intratheater transportation needs rather than going through 

multiple stages of guesswork, followed by hours of simulation, when selecting a vehicle 

mixture for successful theater distribution in a planned contingency operation. 

Furthermore, in addition to reducing the man-hours required to conduct the 

planning, testing, and analysis of OPLANs/TPFDDs, an optimization model would allow 

analysts to explore different feasible vehicle mixtures by changing model inputs as a 

demonstration of different policy decisions or other driving forces.  Through this 

research, improved efficiency in planning of theater distribution will help ensure 

war-fighters are given the materiel and equipment they need in an on-time and least-cost 

manner. 

Organization 

 The remainder of this thesis contains four additional chapters.  Chapter II 

provides a literature review of airlift optimization modeling, the Pickup and Delivery 

Problem with Time Windows, and other relevant models focused on distribution.  

Additionally, the proposed TDM is introduced and explained in detail.  In Chapter III, the 

methodology utilized in this research is discussed.  In particular, a reduced-size, mixed 

integer programming solution method is developed.  Chapter IV shows the 

implementation of the methodology and demonstrates improvements over the TDM.  

Chapter V offers concluding remarks and discusses how this research might be extended 

with further work.  
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II.  Literature Review 
 

 

 This chapter will provide a review of relevant literature, focusing mainly on 

distribution-related models.  The research mentioned herein is not entirely exhaustive, but 

gives the reader a general understanding of past efforts in areas such as airlift 

optimization modeling, the Pickup and Delivery Problem with Time Windows, and 

specific Tabu Search approaches to theater distribution.  Additionally, great detail is 

given on the Theater Distribution Model, or TDM.  This model, developed for the 

purpose of force flow analysis, was the basis of this thesis research. 

Background  

 The US Military utilizes a number of simulation tools to assist in mobility 

planning.  Interested readers are directed to McKinzie & Barnes (2004) for a review of 

some of these models.  However, as discussed by Longhorn & Kovich (2012), these 

models tend to describe rather than prescribe various aspects of theater distribution.  

While various optimization techniques have been applied to military transportation 

problems throughout the years, many of them are aimed at the specific routing and 

scheduling of individual vehicles.  However, force flow analysts are not concerned with 

creating individual routes for vehicles.   

Force flow analysis is strictly for planning purposes, in which analysts attempt to 

judge the feasibility of future transportation plans and adapt plans when necessary.  

Furthermore, combat is a dynamic environment in which many aspects cannot be planned 

for exactly because scenarios often can, and do, change instantly.  For example, physical 

factors such as terrain, weather, and the impacts of friendly and enemy forces greatly 
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affect operations and sustainment (Joint Chiefs of Staff, 2011b).  For these reasons, the 

creation of individual vehicle routes and schedules is neither necessary nor desired for 

force flow analysis.  Instead, analysts simply desire a baseline vehicle mixture that will 

successfully support distribution operations.  This chapter will offer a review of 

distribution modeling efforts as well as specific mathematical approaches to closely 

related problems such as the Pickup and Delivery Problem with Time Windows. 

Airlift Optimization Modeling 

Early optimization efforts on military distribution often focused on airlift 

capabilities.  Rappoport, Levy, Toussaint, & Golden  (1994) developed a transportation 

problem formulation to be utilized in airlift planning for Military Airlift Command, the 

predecessor to the US Air Force’s Air Mobility Command (AMC).  The model was 

utilized to assign differing airlift vehicle types, such as bulk or outsize, and shipment 

days to specific requirements.  Then, once these matches were made, the results were 

preprocessed and then placed into a heuristic routing and scheduling procedure known as 

the Airlift Planning Algorithm (APA).  The model, set up as a linear programming 

transportation problem, minimized the costs of assigning capacity to different 

requirements.  While the model matches vehicle types to movements as a preprocessor to 

further modeling, the transportation model does not dictate the number of vehicles 

needed to sustain flow within the network.   

Shortest path techniques have also been applied to AMC aircraft routing.  Rink, 

Rodin, Sundarapandian, & Redfern (1999) applied a double-sweep algorithm to find the  

k - shortest paths between each onload location and offload location given in a TPFDD.  

However, the time factor (i.e. avoiding lateness) is not considered in this model.  Shortest 
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path methods can be a hindrance to successful analysis.  Due to certain policy decisions 

regarding concerns like safety or enemy in the area, a shortest path may not be the best 

path.  Additionally, shortest paths are not guaranteed to have enough outloading and 

unloading resources to support distribution. 

Rosenthal et al. (1997) discuss the use of THRUPUT II, a model developed at the 

Naval Post Graduate School, in order to model the entire transportation network.  Linear 

programming is used to yield on-time throughput of both cargo and passengers.  That is, 

given the inputs of units to be moved, airfields available, aircraft available, and routes 

available, the model provides routes and mission start times for aircraft within the model.    

All airlift models have an inherent drawback for use in theater distribution 

analysis because they fail to consider movement amongst other modes of transportation, 

such as rail or road.  Thus, the effects and tradeoffs between different modes cannot be 

properly assessed.  In theater distribution, multiple modes are usually available and thus 

multimodal modeling is important.  

Pickup and Delivery Problem with Time Windows  

In theater distribution, requirements are to be picked up at their respective POD 

and then delivered to their in-theater destination.  A TPFDD will dictate what the time 

windows for both the pick-up at the POD and delivery at the Destination are.  Because of 

the time windows on both the pickup and delivery, this problem is related to an 

optimization problem known as the Pickup and Delivery Problem with Time Windows 

(PDPTW).  The PDPTW involves transportation requests that have both a pickup and 

delivery location along with time windows in which the pickup and delivery must occur.  

Solutions to the PDPTW yield optimal routes for vehicles in which demand is met within 
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the appropriate time windows while meeting capacity and precedence constraints 

(Dumas, Desrosiers, & Soumis, 1991). 

Dumas et al. (1991) offer a PDPTW mathematical formulation that utilizes a 

homogenous fleet of vehicles and is solved utilizing column generation with a shortest 

path subproblem.  Many other solution attempts to the PDPTW have been developed, 

such as the Reactive Tabu Search method employed by Nanry & Barnes (2000).  

Furthermore, Baldacci, Bartolini, & Mingozzi (2011) utilize a set partitioning 

formulation to solve the PDPTW.  Readers interested in exploring the different 

formulations and applications of the PDPTW may review Cordeau, Laporte, Potvin, & 

Savelsbergh (2007). 

Because the US military has numerous vehicle types in their inventory, the 

PDPTW with a homogenous fleet is not a particularly useful model.  However, pickup 

and delivery models utilizing multiple vehicle types have been studied.  Lu & Dessouky 

(2004) developed an exact algorithm for solving the multiple vehicle pickup and delivery 

problem (MVPDP), which may include time windows.  Their integer programming 

formulation allows for multiple heterogeneous vehicles.  Many heuristic solution 

methods to the MVPDP have also been developed and interested readers may reference 

Savelsbergh & Sol (1995).  Xu, Chen, Rajagopal, & Arunapuram (2003) developed a 

Practical Pickup and Delivery Problem (PPDP) that extends the PDPTW to include, not 

only multiple vehicle types, but many additional considerations such as multiple time 

windows, travel time restrictions, and compatibility constraints. 

It is important to point out that the PDPTW typically involves an assumption that 

a set number of vehicles are located at depots from which vehicles begin their routes.  
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However, in theater distribution, vehicles are typically not centrally located at some depot 

where they are then scheduled and routed for missions.  Instead, transportation assets are 

typically delivered into the theater of operations.  In fact, a goal of force flow analysis is 

to determine how many vehicles of each type need to be located at different PODs to 

begin supporting transportation requirements. 

Tabu Search Approaches to Theater Distribution  

Tabu Search approaches have recently been applied specifically to theater 

distribution problems.  Crino, Moore, Barnes, & Nanry (2004) utilized Group Theoretic 

Tabu Search in order to solve the Theater Distribution Vehicle Routing and Scheduling 

Problem.  This is a powerful approach which prescribes the routing and scheduling of 

multimodal theater transportation assets at the individual vehicle level in order to provide 

time-definite delivery of cargo.  Likewise, Burks, Moore, Barnes, & Bell (2010) utilized 

Adaptive Tabu Search in an attempt to solve the theater distribution problem.  This model 

focuses on solving two separate problems simultaneously.  It solves both the Location 

Routing Problem and the Pickup and Delivery Problem with Time Windows to optimally 

choose locations of depots and supply points as well as the specific routes of vehicles 

while satisfying all demand requirements.  As with many other models discussed in this 

chapter, these models prescribe individual vehicle routes and schedules. 

While these Tabu Search approaches optimize time-definite delivery and allow 

multiple modes to be utilized within the transportation network, the models are of such 

high-fidelity that they are of little use in force flow analysis.  Because too many factors 

could change an individual vehicle’s route under combat scenarios, a general 

approximating solution approach, at the aggregate vehicle level, is preferred for force 
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flow analysis.  Thus, while a model employing Tabu Search may provide practical results 

for a day-to-day outlook on theater distribution operations, these models are not 

particularly insightful for force flow analysis, where a generalized solution that provides 

baseline estimates for necessary vehicles is more favorable (Longhorn & Kovich, 2012). 

Time-Space Network Approaches 

In order to model disaster relief operations Haghani & Oh (1996) developed a 

multicommodity, multimodal network flow model that finds the optimal use of different 

modes in a network to meet commodity and time requirements.  To do this, a time-space 

network is utilized, which means that nodes in the network represent not only the 

physical locations of supply and demand, but also moments in time.  Thus, time can be 

captured as flow occurs through the network.  A time-space network technique is also 

utilized by Clark, Barnhart, & Kolitz (2004) to model the distribution of US Army 

Munitions, where ammunition and ship movements are scheduled within the distribution 

system. 

Theater Distribution Model (TDM) 

TDM Overview. 

To determine an appropriate mixture of vehicles necessary to conduct theater 

distribution for specific contingencies, Longhorn & Kovich (2012) proposed a pure 

integer programming model.  The Theater Distribution Model (TDM) attempts to find an 

optimum allocation of requirements to vehicles such that time-definite delivery occurs in 

a least-cost manner.  Unlike other distribution models, the TDM does not specify routes 

and schedules for individual vehicles.  As previously discussed, those sorts of high-

fidelity models are impractical for force flow analysis.  Instead, the TDM answers 
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questions such as when, where, what type, and how many when discussing vehicles 

needed to conduct theater distribution subject to physical network constraints. 

In the TDM, users must select which modes of transportation and vehicle types 

they wish to enter into the model.  Selected modes form the set  M   . The individual 

Modes  m M   will typically contain all or some elements of the set {Air, Road, Rail}.  

Vehicle Types are selected by the user to form a set of vehicle Types  K   .  Each vehicle 

Type  k K   is a specific vehicle (e.g. C-17) of a single Mode  m   , and has two input 

parameters associated with it.  The first parameter is the daily cost of utilizing vehicle 

Type  k ,  kb   .  This cost could be financial in nature, but it may also be utilized as an 

arbitrary cost in order to analyze the impact certain policy decisions have upon solutions.  

The second parameter is  kp   , the average payload (measured in short tons) of a vehicle 

of Type  k   .   

The TDM draws much data for use in analysis from the TPFDD that is associated 

with the theater distribution plan under analysis.  The TPFDD under consideration will 

list  maxn   separate movement requirements.  Thus, the set  {1,... }maxN n   contains a 

unique identifier for all movement requirements in the TPFDD.  Each movement 

Requirement  n N   has associated data with it such as the specific requirement’s POD, 

Destination, EAD, RDD, and total weight.  The set  I   contains all PODs  i   included in 

the TPFDD requirements while the set  J   contains all Destinations  j   .  Each 

movement Requirement  n   , to be delivered from POD  i   to Destination  j   , has a 

requirement weight  
nijr   which is measured in short tons.  Within the model, it is 
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assumed that all requirements are standard cargo requirements.  Passenger requirements 

and any potential restrictions on outsize or oversize cargo are ignored. 

The variable  nad   describes the day in which Requirement  n   arrives at its stated 

POD.  The TDM assumes that a requirement may not ship from its POD until the day 

immediately following its arrival at the POD.  In other words, the first day in which 

Requirement  n   can deliver from its POD to its Destination would be the day  1nad    .  

The variable  nrd   indicates the Required Delivery Date, or RDD, at the Destination for 

each Requirement  n   .  Any requirement arriving after the RDD is considered late.  

Analysts and commanders may work together to determine how late a requirement may 

be for analysis.  Each Requirement  n   may be given  nqd   extension days in order to be 

delivered.  Delivering on an extension day is allowable, but the movement will be 

denoted as late and a penalty,  g  , will be assessed per vehicle for each day late.  The 

value of  g   is user-defined. 

The TDM does not allow requirements to be delivered beyond their RDD plus 

any input extension days.  Mathematically, this means that each requirement n  must be 

picked up and delivered within the time window beginning at day  1nad   and ending at  

n nrd qd   .  Thus, the Days utilized within the model range from  min 1n
n N

ad


   to  

max n n
n N

rd qd


   .  The set V  describes this set of Days  v   for delivery, spanning the 

absolute earliest possible day of requirement delivery and the absolute latest possible 

delivery day based upon information located in the TPFDD. 
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Physical limitations of the distribution network are captured in the TDM with 

restrictions on the number of vehicles which may be outloaded at PODs and unloaded at 

Destinations within a given day.  Characteristics such as space and manning may impact 

the amount of vehicles that may pass through a POD or Destination daily.  The TDM 

assumes that these outloading and unloading limits are not based upon specific vehicle 

Types, only vehicle Modes.  In the model,  imvo   describes the maximum number of Mode  

m   vehicles that can be outloaded at POD  i   on Day  v   of the operation.  Likewise,  

jmvu   describes the maximum number of Mode  m   vehicles that can be unloaded at 

Destination  j   on Day  v   .  If a certain POD or Destination does not support the 

movement of a certain Mode, then the associated parameters  imvo   , or  
jmvu   

respectively, would have a value of zero.  Typically, subject matter experts can provide 

these parameters. 

The TDM assumes that a vehicle type assigned to a requirement will transport 

directly from the POD to Destination, and back and forth as necessary, until the entire 

requirement has completely been delivered.  Thus, the model requires data on how many 

direct trips may be completed in a single day.  The parameter  
nijmkw   details the 

approximate number of daily cycles that can be completed by a Mode  m  , Type  k   

vehicle delivering Requirement  n   from POD  i   to Destination  j   .  These 

approximate cycle values must be calculated before being input into the model and 

should take into account outloading and unloading times as well as distance between 

locations and vehicle speeds.  Interested readers are encouraged to reference Longhorn & 

Kovich (2012) to see their cycle calculations. 
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The decision variable of the TDM is  
nijmkvx   , which describes the number of 

vehicles of Mode  m  , Type  k   that are required on Day  v   to deliver Requirement n  

from POD  i   to Destination j   .  Thus, the decision variables provide much pertinent 

information when assessing a vehicle mixture solution output.  Table 2 - Table 4 below 

summarize the sets, parameters, and decision variables utilized in the TDM’s pure integer 

programming formulation. 

 

Table 2.  TDM Sets 

Set Description 

N  Set of all Movement Requirements n  

I  Set of all PODs i  

J  Set of all Destinations j  

M  Set of all vehicle Modes m  

K  Set of all vehicle Types k  

V  Set of all possible delivery Days v  
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Table 3.  TDM Parameters 

Parameter Description 

kb  Daily operating cost for a Type  k   vehicle 

kp  Average payload of a Type  k   vehicle 

nijr  
Total weight (in short tons) of Requirement  n   that must be delivered 

from POD  i   to Destination j  

nad  Day in which Requirement  n   arrives at its given POD 

nrd  
Day describing the Required Delivery Date (RDD) at the given 

Destination for Requirement n  

nqd  
Maximum allowable extension days beyond RDD in which Requirement  

n   can be delivered late to given destination (with penalty) 
g  Late penalty per vehicle per day 

imvo  
Maximum number of Mode  m   vehicles that can be outloaded at POD  

i   on Day v  

jmvu  
Maximum number of Mode  m   vehicles that can be unloaded at 

Destination  j   on Day v  

nijmkw  
Number of possible cycles in a day between POD  i   and Destination j  

via Mode m  , Type  k   vehicles transporting Requirement  n  

 

 

 

Table 4.  TDM Decision Variables 

Variable Description 

nijmkvx  
Number of vehicles of Mode  m   , Type  k   that are required on Day  v   

to deliver Requirement  n   from POD  i   to Destination j  

 

 

 

TDM Formulation. 

The TDM, a pure integer linear program formulated by Longhorn & Kovich, is 

shown below in Model 1. 
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1 1

Minimize ( )
n n n n

n n

rd q rd q

k nijmkv n nijmkv

N I J M K v ad N I J M K v rd

b x g v rd x
 

   

      (1) 

Subject to   

1

     
n n

n

rd q

nijmk k nijmkv nij

M K v ad

w p x r n i j


 

      (2) 

           nijmk nijmkv imv

N J K

w x o i m v     (3) 

           nijmk nijmkv jmv

N I K

w x u j m v     (4) 

{0}                          nijmkvx n i j m k v        (5) 

Model 1.  Theater Distribution Model (TDM) 

 

 

The TMD has two objectives, both of which are captured in a single objective 

function seen in (1).  The objective minimizes the cost of vehicles allocated to execute 

the deliveries and minimizes the number of late vehicles.  Recall a late vehicle is one that 

delivers a requirement on an extension day, after its stated RDD.  Though the penalty 

value  g   in the objective is user-defined, it should be scaled large enough to ensure that 

it is less-preferred to any potential costs associated with on-time movement.  Because the 

penalty factor is multiplied by the number of days past the RDD that the delivery is 

made, increased lateness causes higher penalties.  Thus, this objective will seek minimum 
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cost vehicle mixtures that will meet all delivery requirements while also minimizing 

lateness. 

The two objectives are combined into a single objective function through the use 

of the weighted sum method, albeit with the weight on each objective set to 1.  In other 

words, the objectives are simply added together.  Readers interested in the weighted sum 

method are directed to Ehrgott (2010).  While both objectives are weighted equally, an 

appropriately high penalty value in the latter objective steers solutions away from late 

requirement deliveries, which would incur penalties and yield high objective values.   

There are three general sets of constraints in the model, including demand, 

outloading, and unloading constraints.  The demand constraints at (2) ensure that enough 

vehicles, and thus capacity, are selected to deliver each requirement’s weight.  This 

constraint specifically allows for delivery to be accomplished through a combination of 

different vehicle types.  Constraints at (3) ensure that the vehicles departing each POD do 

not exceed the specific outloading capacity of each specific POD, Mode, and Day 

combination.  Likewise, (4) ensures that unloading capacities at Destinations are not 

violated.  Lastly, (5) dictates that vehicle decision variable values may only take on either 

zero or nonnegative integer values. 

Because the decision variables are indexed across so many different sets, much 

information is conveyed by the decision variables once the TDM is solved.  For example, 

one decision variable and value taken from an arbitrary solution might be  

6, , , , 130,5 4VTFP WMAL Air Cx    .  This means that Requirement 6, being delivered from POD 

VTFP to Destination WMAL would require 4 C-130 aircraft on Day 5 to complete 

delivery.  Thus, appropriate post-processing can inform analysts greatly. 
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TDM Conclusion. 

The TDM was developed specifically for force flow analysis with the purpose of 

analyzing the movement of requirements in a multimodal network with differing vehicle 

types while seeking optimal vehicle allocations for requirements.  Thus, the goal of the 

TDM is to provide feasible vehicle mixtures that would sustain movement operations 

based upon TPFDD requirements and outload and unload capabilities at PODs and 

Destinations.  This would be an improvement over current force flow analysis processes 

in which vehicle mixtures are found essentially through trial and error. 

Conclusion 

 Much of the previous research on theater distribution has involved the precise 

routing and scheduling of individual vehicles within a network.  However, these types of 

models are simply too high-fidelity for use at USTRANSCOM force flow conferences.  

Additionally, many related optimization problems such as the PDPTW are also 

routing-focused at the individual vehicle level.  However, when assessing theater 

distribution from a force flow analysis standpoint, approximate vehicle mixtures are 

preferred.  For this reason, the TDM does not develop routes and instead assumes 

allocated vehicles will travel directly between its requirement’s stated POD and 

Destination. 

Another key difference between the TDM and other previous models is that most 

approaches, such as the PDPTW and Tabu Search, assume that a predetermined set of 

vehicles are available for the model to route and schedule.  For example, one might say 

that 20 vehicles are available in a PDPTW.  Thus, the overall capacity of transportation 

assets within the network is defined up front and the model attempts to route and 
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schedule those 20 vehicles.  However, in the TDM, no such overall transportation 

capability is input.  In fact, the transportation capability is exactly what the model outputs 

as decision variables.  That is, the TDM gives the minimum-cost set of vehicles that will 

sufficiently support requirement delivery.  This is a better approach than limiting vehicles 

up front, as any output vehicle mixture deemed unsatisfactory by decision makers can be 

modified by either redesigning operations or implementing policy changes, such as 

including other vehicle types, or by adding more port capabilities. 

While the proposed TDM detailed in this chapter can offer some insight into 

theater distribution, it has great room for improvement.  The solution methodologies 

outlined in this thesis are aimed at improving the pure integer programming TDM in both 

ease of solving and also in goodness of solutions, providing for better theater distribution 

force flow analysis.  Chapter III details the methodology which results in an improved 

model. 
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III.  Methodology 
 

 

Introduction 

This research is carried out in three distinct steps.  Firstly, work is conducted to 

drastically reduce the problem size of the TDM.  The TDM includes a number of 

extraneous decision variables, causing the associated constraint matrix to be extremely 

sparse.  Additionally, numerous unnecessary constraints are included.  To reduce 

computational difficulties by ridding the problem of unnecessary variables and 

constraints, the Reduced Theater Distribution Model (RTDM) is developed.  Next, once 

model reduction is complete, the mixed integer programming Improved Theater 

Distribution Model (ITDM) is developed which maintains model reduction principles but 

changes the modeling process by introducing a set of continuous decision variables.  

Lastly, analysis is conducted on the models. 

Assumptions 

Many assumptions are drawn directly from Longhorn & Kovich (2012).  

Allocated vehicles are assumed to travel only between their stated POD and Destination.  

That is, vehicles may not pick up at multiple PODs nor deliver to multiple Destinations.  

Furthermore, a vehicle allocated at a POD can never accomplish the delivery of 

requirements leaving from another POD.  Additionally, it is assumed that for all 

transportation modes, there is only one (if any) path between two locations.  It is also 

assumed that requirements may not leave their POD until the day following their arrival 

at the POD.  Thus, a requirement’s delivery window goes from the day after its arrival at 

the POD to the RDD plus any extension days.  For post-processing, it is assumed that 
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vehicles allocated at a POD for the distribution of requirements are eligible to be utilized 

in subsequent days as well.  Lastly, it is assumed that any requirement may be placed on 

any vehicle, and that requirements may be split in any possible way and any number of 

times.  Again, as this model only approximates vehicle mixtures, precise modeling of the 

exact shape and type of each requirement and/or vehicle is not conducted.  Lastly, 

outload and unload constraints are applied to modes only, not specific vehicle types. 

Reduced Theater Distribution Model (RTDM) 

RTDM Motivation.  

As detailed thoroughly in Chapter II, the TDM prescribes the number and type of 

vehicles, along with timing information, needed to successfully conduct a theater 

distribution operation.  However, as formulated, the model can be incredibly burdensome 

to generate.  This is because the formulation leads to a large number of decision variables 

and numerous unnecessary constraints.  

 For example, recall the TDM objective function, (1) which contains summations 

which go across the entire sets  , , , , ,N I J M K   as well as portions of  V .  Because of 

this, decision variables 
nijmkvx   are created for every possible combination of indices  

, , , ,n i j m k   along with some values of  v   .  However, many of the 6-tuples  

( , , , , , )n i j m k v   correspond with unrealistic, and even impossible, decisions.  For 

example, consider the sample sets below in Figure 2. 
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N = {1,2,3} 

I = {A,B} 

J = {C,D} 

M = {Air, Road} 

K = {C-130, M1083} 

V = {3,4,5,6} 

Figure 2.  Arbitrary Example Sets 

 

 

 

Assuming Day 4 is within the deliver window for Requirement 2, that is that  

2 2 21 4ad rd qd      , one possible 6-tuple  ( , , , , , )n i j m k v   from the given sets is  

(2, , , , 130,4)A C Road C    .  This 6-tuple corresponds with decision variable  

2, , , , 130,4A C Road Cx 
  which would be generated within the integer program’s objective.  

However, this decision variable is illogical, for the C-130 is an aircraft platform, and is 

not a vehicle of Mode Road. 

Mathematically,  
2, , , , 130,4A C Road Cx 

  , and other decision variables with similar 

circumstances, will always be zero upon solving the model.  Because the C-130 is not of 

the Mode Road, there can be no daily cycles between POD  A   and Destination  C   for 

Mode Road, Type C-130 vehicles, regardless of Requirement number.  Thus, in 

parameter input, a user would define the daily cycles parameter  
2, , , , 130 0A C Road Cw     , to 

demonstrate no movement via this Mode/Type combination is possible.  With

2, , , , 130 0A C Road Cw   ,  
2, , , , 130 2, , , , 130,4 0A C Road C A C Road Cw x     .  Therefore, giving 

2, , , , 130,4A C Road Cx 
  

any nonzero value adds to the objective but fails to impact constraints (2) through (4) in 

the model.  In particular, the requirement’s demand constraint, where delivery is 

enforced, would not be met at all by giving such a decision variable nonzero value.  
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Therefore, the TDM does not give variables such as  
2, , , , 130,4A C Road Cx 

  a nonzero value as 

that would absolutely increase the objective while failing to impact any of the constraints.  

Thus, because this decision variable, and others like it, will always be zero and have no 

impact on the solution, they should not be generated and included in the model.  The 

same can be said for extraneous decision variables unnecessarily generated by TDM 

constraints. 

In addition to extraneous variables being generated by the model, the TDM also 

creates numerous unnecessary constraints with a right-hand side (RHS) of 0.  For 

example, recall our sample sets in Figure 2.  Again, assume that Requirement 2 is to be 

delivered from  A   to  C   and has weight of 100 short tons.  Then  
2, , 100A Cr    , by 

definition of parameter  
nijr  .  Furthermore,  

2, , 2, , 2, , 0A D B C B Dr r r    because 

Requirement 2 is not delivered along any of those POD  i   , Destination  j   pairs.  Then 

when implementing Constraints (2) for all combinations of  i   and  j   with  2n    , the 

following four constraints are obtained: 

 

1

100     2, ,
n n

n

rd q
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  Note that the latter three constraints are completely unnecessary.  As the TDM 

assumes that each of  , , 0nijmkv nijmk kx w p    , it is clear that the latter three constraints 

above will always be trivially greater than or equal to 0 and thus satisfied.  Therefore, 

their inclusion in the model is unwarranted because the constraints will always be 

satisfied regardless of decision variable or parameter values.  A similar happening occurs 

with the TDM’s outloading and unloading constraints in that extra unneeded constraints 

may also be created.  

While including superfluous decision variables with a value of zero and 

unnecessary constraints in the model will not dictate different solutions, it may have 

drastic impacts on memory allocation and problem size.  Recall that a large scale TPFDD 

may have thousands of requirements, hundreds of Days, and numerous PODs, 

Destinations, Modes, and Vehicles.  Thus, as the problem increases in size, many more  

6-tuples  ( , , , , , )n i j m k v   are possible and thus many more decision variables must be 

generated even though many may, by default, have value of 0 as discussed above.  This 

causes the constraint matrix to become increasingly sparse, possibly causing problems to 

become intractable if enough computer memory is not available to generate or solve the 

problem.  Even if the problem is tractable, the extraneous variables and unnecessary 

constraints increase the problem size and thus slow solution time. 

To avoid this dilemma, a Reduced Theater Distribution Model (RTDM) is 

designed which sensibly reduces the problem while keeping all necessary variables and 

constraints intact.  This is done in two ways.  Firstly, decision variables are generated by 

the model only when there exists a chance for a decision variable to become nonzero, 

which implies that a vehicle allocation is theoretically possible.  Secondly, constraints 
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that do not affect the feasible space are not entered into the model.  These problem 

reducing concepts are implemented with a series of decomposing sets and binary 

functions which are used to determine which portions of a set to sum through, as well as 

which constraints are valid and necessary constraints to include in the model.   

RTDM Overview. 

While the parameters and decision variables from the TDM remained unchanged 

in the RTDM, new sets are introduced with the purpose of reducing model sparsity and 

ridding the problem of unnecessary variables and constraints.  This assists in quicker 

model generation.  Some of the sets are simple decomposing sets and some sets require 

the use of binary functions to determine inclusion.  These sets, paired with an adjusted 

formulation, greatly reduce the problem size while keeping the concepts and intent of the 

TDM fully intact.  This subsection will detail changes to the sets that are utilized in the 

RTDM.   

Firstly, new decomposing sets are introduced.  These sets simply decompose the 

original TDM sets of  ,M K   and  N   .  The set  
ijM  is introduced to describe the eligible 

modes that may be selected between any POD  i   and Destination  j   .  For example, if 

Air and Road are possible transportation modes between  i   and j   , but Rail is not, then 

{ , , }M Air Road Rail   yet  { , }ijM Air Road   .  The RTDM also introduces the set  mK   

which describes the set of vehicles Types  k K  which are of Mode  m   .  For example,  

AirK  may contain the air platforms C-130, C-5, and C-17.  The set  iN   is introduced to 

include only requirements  n N  such that Requirement  n   departs POD  i   .  Likewise, 

the set  
jN   is introduced to include only requirements  n N   such that Requirement  n   
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arrives at Destination  j   .  These decomposing sets are easily determined with 

preprocessing and are of great value in reducing problem size by eliminating extraneous 

decision variable creation within constraints. 

In addition to the decomposing sets, the RTDM also utilizes five Function 

Derived Tuple Sets:  VOTM ,  VLM   ,  VR   ,  VO   , and  VU   .  Binary functions are 

used to evaluate the inclusion of tuples within these sets.  Thus, these sets can be utilized 

to determine which tuples’ corresponding variables should be included within the 

objective and constraints.  Functions (6) to (11) below describe the binary functions used 

to create the new sets. 

 

1, if Requirement  delivered on Day  would be on-time 
( , )

0, otherwise

n v
A n v


 


                                       (6) 

1, if Requirement  delivered on Day  would be late  
( , )

0, otherwise

n v
B n v


 


                                                 (7) 

1, if vehicle of Type  is also a Mode  vehicle
( , )    

0, otherwise

k m
C m k


 


                                                     (8) 

1, if Requirement  is to be delivered from POD  to Destination 
( , , )

0, otherwise

n i j
D n i j


 


                             (9) 

1, if  some Requirement  that may outload at POD  onto a Mode  vehicle on day 
( , , )

0, otherwise

n i m v
E i m v


 


(10)

1, if  some Requirement  that may unload at Destination  off of a Mode  vehicle on day 
( , , )

0, otherwise

n j m v
F j m v


 


(11) 
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The first set,  VOTM   , describes 6-tuples which are utilized in the decision 

variables  
nijmkvx   .  The set  VOTM   , or Valid On Time Movements, yields tuples which 

correspond to decision variables indicating valid, on-time movements.  Mathematically,  

{( , , , , , ) | ( , ) ( , ) ( , , ) 1}VOTM n i j m k v A n v C m k D n i j      .  This implies that Requirement  

n   is eligible to deliver from POD  i   to Destination  j   via a Mode  m   , Type  k   

vehicle on Day  v   where  nv rd   .  Proper decision variable tuples in  VOTM   may not 

have Mode/Type mismatches, delivery Days after the RDD, or POD/Destination pairs 

that are not the proper, designated POD and Destination for specific requirements.  Thus, 

for decision variables  
nijmkvx   , Functions (6), (8), and (9) work together to determine if 

the corresponding 6-tuple  ( , , , , , )n i j m k v   warrants inclusion in the set  VOTM   .  

Function (6) determines if Requirement  n   would be on-time if shipped on Day  v   .   

Function (8) determines if a Type  k   vehicle is of Mode  m   and Function (9) checks to 

ensure that Requirement  n   ships from  i   to  j   .  Only if all functions return a value of 

1, and thus the product of the functions is also 1, will the 6-tuple be included in the set  

VOTM   and the corresponding decision variable be generated and placed in the 

objective. 

The second set,  VLM   , also describes 6-tuples which are utilized in the decision 

variables.  The set  VLM   corresponds to decision variables for Requirement  n   

shipping from POD  i   to Destination  j   via a Mode  m   , Type  k   vehicle on Day  v   

such that  n n nrd v rd qd     .  This set is dissimilar to  VOTM   in that it describes 

6-tuples  ( , , , , , )n i j m k v   whose corresponding decision variable would indicate a 
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requirement being delivered past the RDD.  Inclusion in  VLM   requires that a 6-tuple’s 

associated decision variable not imply a Mode/Type mismatch, POD/Destination 

mismatch, or delivery prior to or on the RDD.  Therefore,  

{( , , , , , ) | ( , ) ( , ) ( , , ) 1}VLM n i j m k v B n v C m k D n i j    .  Functions (8), and (9) work as 

described in  VOTM   and Function (7) determines if the decision variable would indicate 

Requirement  n   being delivered late after the RDD.  If such conditions are met, a 

6-tuple’s corresponding decision variable will be generated and included in the objective 

function.   

The final three Function Derived Tuple Sets are utilized for ridding the 

formulation of unnecessary constraints.  The set of Valid Routes is defined by Function 

(9).  That is,  {( , , ) | ( , , ) 1}VR n i j D n i j    .   As each Requirement  n   has only a single 

POD  i   and Destination  j   , there is only a single 3-tuple for each Requirement  n   that 

describes its one and only Valid Route.  Function (10) checks whether or not for a given 

3-tuple ( , , )i m v , some Requirement  n N   may outload at POD  i   onto a Mode  m   

vehicle on Day  v   .  This is used to construct the set of Valid Outload tuples,  VO   .  

Mathematically,  {( , , ) | ( , , ) 1}VO i m v E i m v    .  Likewise, Function (11) utilizes the 

same methodology to construct Valid Unload tuples,  VU   .  The set  VU   is defined 

mathematically by  {( , , ) | ( , , ) 1}VU j m v F j m v    .  All of the new sets discussed lead 

to the reduced formulation of the RTDM by eliminating extraneous decision variables 

and unnecessary constraints from the problem.  Table 5 - Table 8 below summarize the 

sets, parameters, and decision variables utilized in the pure integer programming RTDM. 
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Table 5.  RTDM Basic Sets 

Set Description 

N  Set of all Movement Requirements  n  

I  Set of all PODs  i  

J  Set of all Destinations  j  

M  Set of all vehicle Modes  m  

K  Set of all vehicle Types  k  

V  Set of all possible delivery Days  v  

ijM  Set of all Modes  m   with direct paths between POD  i   and Destination  j  

mK  Set of all vehicle Types  k   which are of Mode  m  

iN  Set of movement Requirements  n   that depart from POD  i  

jN  Set of movement Requirements  n   that arrive at Destination  j  

 

 

 

Table 6.  RTDM Function Derived Tuple Sets 

Set Description Mathematical Notation 

VOTM  
Valid On-Time 

Movements 

{( , , , , , ) | ( , ) ( , ) ( , , ) 1}n i j m k v A n v C m k D n i j    

VLM  Valid Late Movements {( , , , , , ) | ( , ) ( , ) ( , , ) 1}n i j m k v B n v C m k D n i j    

VR  Valid Routes {( , , ) | ( , , ) 1} n i j D n i j   

VO  Valid Outloading {( , , ) | ( , , ) 1}i m v E i m v   

VU  Valid Unloading {( , , ) | ( , , ) 1}j m v F j m v   
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Table 7.  RTDM Parameters 

Parameter Description 

kb  Daily operating cost for a Type  k   vehicle 

kp  Average payload of a Type  k   vehicle 

nijr  
Total weight (in short tons) of Requirement  n   that must be delivered 

from POD  i   to Destination  j  

nad  Day in which Requirement  n   arrives at its given POD 

nrd  
Day describing the Required Delivery Date (RDD) at the given 

Destination for Requirement  n  

nqd  
Maximum allowable extention days beyond RDD in which 

Requirement  n   can be delivered to given destination (with penalty) 
g  Late penalty per vehicle per day 

imvo  
Maximum number of Mode  m   vehicles that can be outloaded at POD  

i   on Day  v  

jmvu  
Maximum number of Mode  m   vehicles that can be unloaded at 

Destination  j   on Day  v  

nijmkw  
Number of possible cycles in a day between POD  i   and Destination  

j   via Mode m   , Type  k   vehicles transporting Requirement  n  

 

 

 

Table 8.  RTDM Decision Variables 

Variables Description 

nijmkvx  
Number of vehicles of Mode  m   , Type  k   that are required on Day  v   

to deliver Requirement  n   from POD  i   to Destination  j  

 

 

 

RTDM Formulation. 

The RTDM, which greatly reduces problem size, is shown below in Model 2. 
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( , , , , , ) ( , , , , , )

Minimize ( )k nijmkv n nijmkv

n i j m k v VOTM VLM n i j m k v VLM

b x g v rd x
  

    (12) 

Subject to   

1

    ( , , )
n n

ij m n

rd q

nijmk k nijmkv nij

M K v ad

w p x r n i j VR


 

     (13) 

           ( , , )
i m

nijmk nijmkv imv

N J K

w x o i m v VO    (14) 

           ( , , )
j m

nijmk nijmkv jmv

N I K

w x u j m v VU    
(15) 

{0}                          ( , , , , , )nijmkvx n i j m k v VOTM VLM      (16) 

Model 2.  Reduced Theater Distribution Model (RTDM) 

 

 

 

The purpose of the RTDM objective and constraints remain the same as discussed 

in the original TDM (page 20)—to find on-time, least-cost vehicle allocations to 

accomplish delivery.  However, the model is reduced significantly by taking advantage of 

the new sets introduced in the RTDM Overview subsection.  With the RTDM, the 

objective (12) retains the purpose of minimizing both vehicle utilization costs and 

penalties for utilizing vehicles for late deliveries.   

By summing across all 6-tuples in  VOTM VLM   , the first part of the objective 

function multiplies vehicle operating cost  kb   and decision variable  
nijmkvx   for each and 

every theoretically possible decision variable.  However, no extraneous decision 



37 

variables, those with 6-tuples  ( , , , , , )n i j m k v VOTM VLM    , are generated.  Likewise, 

only the logical decision variables whose 6-tuples correspond to late movements, that is 

those where  ( , , , , , )n i j m k v VLM   , are multiplied by the penalty factor.  Thus, the 

objective function includes the all theoretically possible decision variables and associated 

costs and penalties. 

The RTDM constraints shown in (13) to (16) are the demand, outloading, 

unloading, and integrality constraints for the model.  These are similar to (2) through (5) 

of the TDM.  However, the left-hand side (LHS) summations in the RTDM constraints do 

not simply go across entire sets.  Instead, some decomposing sets are utilized, which 

keeps extraneous variables from being created.  Additionally, the “for all” statements for 

each general constraint that dictate which combinations of variables are used to generate 

a constraint are restricted in the RTDM.  Recall that the TDM generated constraints for 

each and every combination of indices for the requirement, outloading, and unloading 

constraints.  However, this is not necessary and thus the RTDM ensures a totally reduced 

format.  

In the demand constraint at (13), the LHS summation is across sets  
ijM   ,  mK   , 

and appropriate values of  v   .  Thus, the decomposed sets ensure extraneous variables 

are not included in the model.  Likewise, only necessary demand constraints are included 

in the model because a constraint is only generated for  ( , , )n i j VR   .  Thus, the use of 

the Function Derived Tuple Set VR  ensures that unnecessary constraints are not 

generated when the 3-tuple ( , , )n i j  is illogical. 
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In the outload and unload constraints at (14) and (15), the sets  iN   and  
jN   , 

respectively, are utilized in the LHS summations in place of the set  N   as was done in 

the TDM.  Additionally, the set  mK   is utilized rather than  K   .  Again, the use of these 

decomposing sets ensures that extraneous variables are not generated in the RTDM.   

Furthermore, 3-tuples are checked for inclusion in the Function Derived Tuple Sets to 

check if a constraint should be made.  A 3-tuple in  VO   will generate a necessary outload 

constraint and a 3-tuple in  VU   will generate an unloading constraint.  Constraints are 

not constructed for 3-tuples not included in  VO   or  VU   as they would have no impact 

on the feasible space. 

RTDM Conclusion.  

By restricting the objective function to consider only theoretically possible 

variables, and using decomposing sets on summations on the LHS of the constraints, the 

RTDM ensures that no extraneous decision variables are created.  Only those decision 

variables that may theoretically take on nonzero value are included.  Properly conducted 

preprocessing and the use of binary functions to determine set inclusion guarantees that 

no decision variable is taken out that could potentially take on a nonzero value.  

Furthermore, limiting the tuples for which constraints are generated reduces the total 

number of constraints in the model.  Because only extraneous decision variables are 

removed and no constraints that affect the feasible space are removed, solving the same 

arbitrary problem with both the TDM and RTDM should yield the same objective value 

and solution.  The difference will be in number of decision variables, number of 

constraints, and problem size.  Thus, a reduced formulation yielding the same vehicle 
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allocations given by the TDM can be successfully, and more easily, generated and 

attained with the RTDM.  

Improved Theater Distribution Model (ITDM) 

ITDM Motivation. 

 While the RTDM greatly reduces problem size by removing extraneous decision 

variables and unnecessary constraints, the core of the modeling formulation remains 

unchanged from the TDM.  The RTDM’s pure integer programming formulation includes 

an objective for on-time least cost vehicle mixtures along with three general constraints 

which are demand, outloading, and unloading.  However, research into RTDM solutions 

indicate changes are needed to the formulation, particularly with respect to new decision 

variables and constraints.  Thus, a mixed integer linear program is developed, known as 

the Improved Theater Distribution Model (ITDM) which improves upon the pure integer 

program RTDM.  In making these new additions, the ITDM also requires some new sets 

to make certain that, like the RTDM, the ITDM is minimally formulated to ensure no 

extraneous decision variables or unnecessary constraints are generated.  The ITDM is the 

main contribution of this research, encompassing both model reduction and a new mixed 

integer programming approach to force flow analysis. 

 Recall that the decision variable of the TDM and RTDM was  
nijmkvx   , 

representing the number of vehicles of Mode  m   , Type  k   that are required on Day  v   

to deliver Requirement  n   from POD  i   to Destination  j   .  That is, each requirement 

is associated with a specific mixture of vehicles and accompanying delivery dates, 

indicated by those decision variables assuming nonzero value.  However, there is an 

inherent flaw in this choice of decision variable as it requires that each Requirement  n   
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be allocated at least one vehicle specifically for that requirement.  This construct does not 

necessary match reality.  For example, consider two requirements, each with the exact 

same attributes of POD, Destination, Arrival Date at POD   nad   and Required Delivery 

Date at Destination   nrd   .  If both requirements each weigh only 10 short tons, it 

should be clear that the two requirements could possibly be allocated to a single 20 short 

ton transport vehicle.  However, modeling with the RTDM (or TDM) would not allow 

this, as each vehicle is specifically matched with a requirement due to decision variables 

having an index of Requirement  n   .  The mixed integer formulation presented in the 

ITDM overcomes this shortfall. 

The RTDM also models lateness poorly and the ITDM addresses this.  This 

improvement is important as a model that inappropriately models lateness may give 

solutions that are not truly representative of the best on-time, least-cost solution.  Recall 

that in the TDM/RTDM formulations, lateness was penalized per vehicle per day late.  

However, it is clear that two vehicles arriving equally late would not necessarily deserve 

to be penalized equally.  Arbitrarily, assume that a truck delivers only two short tons late 

while an aircraft delivers 50 short tons late.  Logically, the aircraft holding the larger 

cargo shipment should be penalized more severely for lateness.  However, the RTDM 

does not consider this.  The RTDM only measures the truck and the aircraft as a single, 

late vehicle.  However, the ITDM penalizes lateness not by measuring the number of 

vehicles that arrive late per day, but rather, how many short tons arrive late per day.  The 

next subsection will explain concepts developed in the ITDM before the model 

formulation is given. 
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ITDM Overview. 

 The ITDM has two different types of decision variables.  Rather than examining 

vehicle decisions only as with the RTDM, the ITDM has one set of decision variables to 

model the flow of requirement short tonnage throughout the network and another to 

represent the vehicles necessary to support these flows.  Continuous decision variables  

nijmkvy   are utilized to represent the number of short tons of Requirement  n   being 

delivered by a Mode m , Type k  vehicle from POD i   to Destination  j   on Day  v   .  

Additionally, the integer decision variable  
ijmkvx   is used, representing the number of 

vehicles of Mode  m   , Type  k   that are needed on Day  v   to deliver any requirements 

from POD i   to Destination  j   .  Note that the integer vehicle variables are not tied to 

any particular requirement number,  n   .  Thus, the vehicle allocations dictated by 

decision variables  
ijmkvx   may embody the movement of one, or many different 

requirements.  Furthermore, both on-time and late cargo may be delivered on the same 

vehicle.  The use of both continuous and integer decision variables allows for a much 

more accurate representation vehicle use. 

In regards to sets utilized in the ITDM, many are carried over from the RTDM 

(page 34), namely the sets  , , , , , , , , , ,m ijN I J M K V K M VR VO   and  VU   .  Like the 

RTDM, the ITDM addresses model reduction.  However, the ITDM’s differing decision 

variables causes some different decomposing sets and Function Derived Tuple Sets to be 

implemented in the ITDM.  The RTDM sets  
,, iVOTM N  and 

jN   are not utilized in the 

ITDM.  Four new sets are introduced with the ITDM, three of which are derived from 

functions as well as a single new decomposing set.  Together, these new sets work to 
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ensure a reduced model that removes all extraneous flow and vehicle decision variables 

from both the objective and constraints, as well as ridding the problem of unnecessary 

constraints. 

While much model reduction in the ITDM is carried out using the same binary 

functions developed in (6) to (11) from the RTDM, one new binary function is introduced 

with the ITDM.  The new binary set defining function  ( , , )G i j v   is introduced which 

determines whether or not there exists any Requirement  n N   , from POD  i   to 

Destination  j   , that may be delivered, either on-time or late, on Day  v   . This binary 

function appears below: 

 

        
1, if  some Requirement ,  from POD  to Destination  s.t. 1

( , , )
0, otherwise

n n nn i j ad v rd qd
G i j v

    
 


 

                (17) 

This binary function is crucial in the creation of vehicle decision variables within 

the ITDM, which populate the set  VV   , or Valid Vehicles.  The set of tuples in  VV   , 

where  {( , , , , ) | ( , , ) ( , ) 1}VV i j m k v G i j v C m k     , includes those tuples which 

correspond to valid vehicle variables that may take on value within the mixed integer 

program.  Thus, a vehicle variable is created only when the 5-tuple  ( , , , , )i j m k v   

corresponds to a theoretically possible vehicle assignment. 

Additionally, the ITDM also reduces the tuples utilized for flow decision 

variables.  Two sets are utilized.  The first set, Valid Flows, yields 6-tuples  

( , , , , , )n i j m k v   which correspond to a valid decision variable on flow within the network, 



43 

both on-time and late.  This set is defined mathematically as  

{( , , , , , ) | ( , ) ( , ) ( , , ) ( , ) ( , ) ( , , ) 1}VF n i j m k v A n v C m k D n i j B n v C m k D n i j         .   

Additionally, the set Late Flows describes valid 6-tuples which correspond to a valid flow 

decision variable which indicate late movement.  Mathematically, this set is defined as  

{( , , , , , ) | ( , ) ( , ) ( , , ) 1}LF n i j m k v B n v C m k D n i j      .  Note that  LF   is mathematically 

equivalent to the RTDM set  VLM   .  However, the tuples in this case correspond to flow 

variables, not vehicle variables. 

 The decomposing set  
ijvN   is also introduced which includes all requirements  

n N   which are to be delivered from POD  i   to Destination  j   and are eligible to 

deliver on Day  v   .  This set is crucial to one of the main constraints of the problem, the 

vehicle linking constraint, which ensures that enough vehicles are allocated to move the 

necessary requirements. 

The parameters of the ITDM remain mostly the same, save for two slight, yet 

important, adjustments.  Firstly, the penalty parameter,  g   , no longer represents the 

penalty per vehicle per day late.  This is because in the ITDM, lateness is measured by 

short tons delivered late rather than vehicles delivering late.  Thus, in the ITDM, the 

penalty variable  g   actually represents the late penalty per short ton per day delivered 

late.  The cycle parameter also changes within the ITDM.  While its purpose remains the 

same, the index of  n N   is removed from the cycle parameter.  Thus, in the ITDM, 

cycles are given by the parameter  
ijmkw   .  Recall that in the TDM /RTDM formulations, 

cycle values  
nijmkw   were defined by their 5-tuples  ( , , , , )n i j m k   .  However, because a 

cycle is simply a time and distance calculation for a Mode  m   , Type  k   vehicle along 
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the path from  i   to  j   , the requirement number is irrelevant.  Thus, a cycle value is just 

as insightful when only defined across the 4-tuple  ( , , , )i j m k   .   

The seven set defining binary functions utilized in the ITDM are listed below in 

Functions (6)-(11), and (17).  Following the functions, the sets, parameters, and decision 

variables of the ITDM are listed in Table 9 to Table 12.  

 

1, if Requirement  delivered on Day  would be on-time 
( , )

0, otherwise

n v
A n v


 


                                           (6) 

1, if Requirement  delivered on Day  would be late  
( , )

0, otherwise

n v
B n v


 


                                                (7) 

1, if vehicle of Type  is also a Mode  vehicle
( , )

0, otherwise

k m
C m k


 


                                                         (8) 

1, if Requirement  is to be delivered from POD  to Destination 
( , , )

0, otherwise

n i j
D n i j


 


                             (9) 

1, if  some Requirement  that may outload at POD  onto a Mode  vehicle on day 
( , , )

0, otherwise

n i m v
E i m v


 


 

                (10) 

 

1, if  some Requirement  that may unload at Destination  off of a Mode  vehicle on day 
( , , )

0, otherwise

n j m v
F j m v


 


 (11) 

1, if  some Requirement ,  from POD  to Destination  s.t. 1
( , , )

0, otherwise

n n nn i j ad v rd qd
G i j v

    
 


      (17) 
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Table 9.  ITDM Basic Sets 

Set Description 

N  Set of all Movement Requirements  n  

I  Set of all PODs  i  

J  Set of all Destinations  j  

M  Set of all vehicle Modes  m  

K  Set of all vehicle Types  k  

V  Set of all possible delivery Days  v  

ijM  Set of all Modes m   with direct paths between POD  i   and Destination  j  

mK  Set of all vehicle Types  k   which are of Mode  m  

ijvN  
Set of Requirements  n   that are eligible to deliver from POD  i   to 

Destination  j   on Day  v  

 

 

 

Table 10.  ITDM Function Derived Tuple Sets 

Set Description Mathematical Notation 

VV  
Valid 

Vehicle  
{( , , , , ) | ( , , ) ( , ) 1} i j m k v G i j v C m k   

VF  Valid Flows  
{( , , , , , ) |

( , ) ( , ) ( , , ) ( , ) ( , ) ( , , ) 1}

n i j m k v

A n v C m k D n i j B n v C m k D n i j     
 

LF  Late Flows {( , , , , , ) | ( , ) ( , ) ( , , ) 1} n i j m k v B n v C m k D n i j    

VR  
Valid 

Routes 
{( , , ) | ( , , ) 1} n i j D n i j   

VO  
Valid 

Outloading 
{( , , ) | ( , , ) 1}i m v E i m v   

VU  
Valid 

Unloading 
{( , , ) | ( , , ) 1}j m v F j m v   
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Table 11.  ITDM Parameters 

Parameter Description 

kb  Daily operating cost for a Type  k   vehicle 

kp  Average payload of a Type  k   vehicle 

nijr  
Total weight (in short tons) of Requirement  n   that must be delivered 

from POD  i  to Destination j  

nad  Day in which Requirement  n   arrives at its given POD 

nrd  
Day describing the Required Delivery Date (RDD) at the given 

Destination for Requirement  n  

nqd  
Maximum allowable extension days beyond RDD in which Requirement  

n   can be delivered to given destination (with penalty) 
g  Late penalty per short ton late per day 

imvo  
Maximum number of Mode  m   vehicles that can be outloaded at POD  

i   on Day  v  

jmvu  
Maximum number of Mode  m   vehicles that can be unloaded at 

Destination  j   on Day  v  

ijmkw  
Number of possible cycles in a day between POD  i   and Destination  j  

for Mode  m , Type  k   vehicles 

 

 

 

Table 12.  ITDM Decision Variables 

Variables Description 

ijmkvx  
Number of vehicles of Mode  m   , Type  k   that are required on Day  v   

to deliver any requirement(s) from POD  i   to Destination  j  

nijmkvy  
Short tons of Requirement  n   delivered from POD  i   to Destination  

j   on Mode m   , Type  k   vehicle(s) on Day  v   

 

 

 

ITDM Formulation. 

The Improved Theater Distribution Model, the main thesis contribution, is 

formulated below in Model 3. 
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( , , , , ) ( , , , , , )

Minimize ( )k ijmkv n nijmkv

i j m k v VV n i j m k v LF

b x g v rd y
 

    (18) 

Subject to   

1

       ( , , )
n n

ij m n

rd q

nijmkv nij

M K v ad

y r n i j VR


 

     (19) 

        ( , , )
m

ijmk ijmkv imv

J K

w x o i m v VO    (20) 

       ( , , )
m

ijmk ijmkv jmv

I K

w x u j m v VU    (21) 

      ( , , , , )
ijv

nijmkv ijmkv ijmk k

N

y x w p i j m k v VV    
(22) 

0                          ( , , , , , )nijmkvy n i j m k v VF    (23) 

{0}                ( , , , , )ijmkvx i j m k v VV     (24) 

Model 3.  Improved Theater Distribution Model (ITDM) 

 

 

 

The ITDM presents significant improvements over both the RTDM and TDM.  

Firstly, the introduction of flow decision variables allow for a better modeling process.  

Model 3 above demonstrates how both flow,  
nijmkvy   , and vehicle,  

ijmkvx   , variables are 

implemented where appropriate.  Because decisions are made on both flow and vehicles, 

vehicles are no longer allocated to single requirements.  Thus, in this formulation a 

specific mixture of vehicles may be matched with portions (measured in short tons) of 
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requirements.  Each vehicle mixture could support partial requirements or one or multiple 

requirements together.  Because vehicles are no longer tied to specific requirements, a 

much more accurate modeling process is achieved. 

 The ITDM objective, given in (18), attempts to minimize vehicle costs while also 

looking to minimize penalties associated with the short tons being delivered late.  Thus, 

optimal solutions to the ITDM will not necessarily include a minimal number of late 

vehicles, but rather a minimal number of late short tons.  This presents a more realistic 

objective in terms of real-world considerations. 

Constraints at (19) ensure that the sum of valid flow variables are large enough to 

equal the demand associated with each requirement.  That is, each requirement must have 

associated flows that will meet the requirement’s weight.  Constraints at (20) and (21) 

ensure that the number of vehicles selected by the model do not exceed the outloading 

and unloading capacities, respectively.  The TDM and RTDM had similar constraints, 

however, formulation is different because vehicles are no longer tied to specific 

requirements.  Thus, no information on the requirement number is needed within these 

two outloading and unloading constraints as they are concerned only with vehicles. 

The vehicle linking constraint at (22) is what ties together the continuous flow 

variables and the integer vehicle variables.  It ensures that, for flow decisions 

corresponding to matching  ( , , , , )i j m k v   values, enough vehicles are allocated to provide 

transportation capacity for appropriate requirements included as part of those flows.  This 

allows vehicles to hold cargo from a number of different requirements.  The constraint 

also allows late cargo from some number of requirements to be delivered with on-time 

cargo from other requirements.  In a real-world scenario, there is nothing that would 



49 

prevent this from happening.  Lastly, (23) ensures that all flow variables are nonnegative 

and (24) ensures vehicle variables are nonnegative and integer.   

ITDM Conclusion. 

 The ITDM is the main contribution of this thesis.  The formulation, with use of 

two separate types of decision variables, adjusted constraints, and the addition of an 

important linking constraint, allows the ITDM to better model flow across a network and 

allocate vehicles to requirements while ensuring a minimum cost vehicle solution that 

also minimizes lateness can be adequately found.  Furthermore, decomposing sets and 

Function Derived Tuple Sets are utilized to maintain a minimum size problem 

formulation, promoting tractability.  Thus, the mixed integer formulation provides a 

useful, powerful tool that can aid in force flow analysis. 

Measuring Vehicle Capacity Utilization 

The Approximate Capacity Utilization (ACU) is defined as the total short tonnage 

included in the TPFDD divided by the approximate amount of cargo-space obtained by 

the model’s vehicle allocations.  The measure is approximate because any noninteger 

cycle values can make it difficult to estimate exactly how many vehicle allocations were 

possible.  To calculate allocated cargo-space, each vehicle variable is multiplied by its 

payload and cycle value.  This value is then summed for all vehicles (i.e. nonzero vehicle 

decision variables).  By letting  S   represent the sum of all requirements’ short tonnage 

listed in a TPFDD and letting  X   represent all nonzero vehicle decision variables, 

mathematically we may define ACU as  

                                                             
nijmkv k nijmk

X

S

x p w
                                                (25) 
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for the TDM/RTDM and  

                                                               
ijmkv k ijmk

X

S

x p w
                                                 (26) 

for the ITDM.  Note that the summation goes across all nonzero vehicle decision 

variables, regardless of whether or not the model ties those vehicles to specific 

requirements.  Thus, the ACU measures the same quantity in both formulae above. 

The ACU is used to measure how well the model is allocating different vehicle 

resources to requirements.  A low ACU implies that much of the capacity provided by the 

allocated vehicles is going unused.  Conversely, an ACU near 100% implies vehicles are 

being used near their full capacity.  In reality, it is highly unlikely that a vehicle is filled 

to 100% of its capacity every time.  However, using the model, one can modify the 

average payload value, kp , such that an ACU of 100% actually implies a smaller amount 

of “filling” is conducted.  

For example, if a vehicle has a true payload of 20 short tons, analysts may 

determine that if the vehicle is filled to 15 short tons it would be a “good” load.  

Therefore, by setting  15kp    , the model is actually assessing capacity based on a 

typical fullness amount rather than a vehicle’s actual capacity.  Thus, while the ACU may 

be near 100%, analysts can be sure that they are not making unrealistic allocations to 

vehicles.  

Approximating Beddowns 

 After running the ITDM, it is possible to post-process solutions to develop a 

possible beddown at each POD for each vehicle type selected by the model.  This 
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information may be very useful to analysts who require information on the number of 

vehicles needed to conduct distribution.  The process of approximating beddowns 

involves taking the vehicle allocation outputs from the model and deriving a possible 

vehicle beddown.  Mathematically, the beddown of vehicles of Mode  m   , Type  k   

needed at POD  i   can be approximated by  

maximk ijmkv
v V

J

Beddown x


 
  

 
  (27) 

This measure will first find how many vehicle to requirement allocations are 

made within each day at every POD for every vehicle Type.  The maximum allocation 

value across all days for each POD and vehicle Type will yield the approximate number 

of Mode  m   , Type  k   vehicles needed to be beddown at POD  i .  Thus, this measure 

converts the allocation decisions determined by the model into beddown information.  

For example, assuming integer cycle values, if the model states that two trains are needed 

at POD Alpha on Days 3, 4, and 5 to deliver requirements, then in actuality, the beddown 

is simply that two trains are needed at POD Alpha.  This measure is applicable under the 

assumption that vehicles utilized at a POD on Day  v   will also be available again on all 

Days subsequent to  v   .  With integer cycle values, vehicles will complete full cycles and 

be available at the POD again the very next day within the model.  To achieve only 

integer cycle values, it may be best to simply take the floor of any noninteger calculated 

cycle value to ensure an overestimated solution rather than an underestimated solution, 

which would perhaps not allow for successful delivery. 
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Although the TDM/RTDM decision variables are indexed over requirements  n   , 

an equivalent beddown measure, shown below, can be utilized where variables tied to 

requirements only departing the POD under consideration are summed into the measure. 

max
i

imk nijmkv
v V

N J

Beddown x


 
   

 
  (28) 

Aggregation of Requirements 

 With each of the three aforementioned models, it is possible to aggregate some 

requirements as a pre-processing step, before the optimization model is run.  If the EAD 

is used as a requirement’s arrival date at the POD, then aggregation of requirements 

would entail combining requirements with the same POD, Destination, EAD, and RDD.  

If multiple requirements have the exact same values for these attributes, their short 

tonnage is combined and the requirements are represented by a new, single requirement.  

Figure 3 below demonstrates how 21 separate requirements drawn from a TPFDD are 

combined into a single requirement.   

 

 

 

Figure 3.  Aggregation of Like Requirements 



53 

Attaining fewer requirements will lead to fewer decision variables and may 

impact the number of vehicles necessary for delivery.  However, because extension days 

are not listed on a TPFDD, but rather determined by commanders, aggregation may lead 

to incorrectly assigned extension days.  Furthermore, it is not possible to disaggregate 

once aggregation has been conducted.  Because aggregation may be implemented as a 

pre-processing step in the TDM, RTDM, or ITDM, aggregation only affects the input, 

specifically of requirements, into the model.  The formulation and mathematics of each 

model remain unchanged. 

Conclusion 

 This chapter has extensively detailed the models developed in this research, 

namely the RTDM and ITDM.  The concept of aggregating requirements as a 

preprocessing step for inputs was also discussed.  Additionally, an approximating 

measure for vehicle beddowns is introduced.  The next chapter of this thesis will detail 

the implementation of these models on a handful of different test cases. 
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IV.  Implementation and Results 
 

 

Implementation 

The RTDM and ITDM presented in Chapter III, along with the TDM, were 

implemented using both Microsoft Office Excel 2007 and the optimization software 

LINGO 13 (Lindo Systems Inc, 2012).  A Decision Support System was built in the 

Excel environment where the user uploads a TPFDD and enters all other input parameters 

for the model.  Once all data has been entered, Visual Basic for Applications (VBA) code 

is used within Excel to construct and write the math programming models to LINGO 

files.  Once built, these files are solved in LINGO 13.  Upon completion, the raw solution 

data is converted into information and then reported back within the Excel environment.  

All testing was conducted on a Dell Precision T7500 computer running Windows Vista 

(Service Pack 2) with two Intel Xeon W5590 processors and 48 GB of RAM. 

To encourage fast solutions for larger models, a relative optimality tolerance 

setting was utilized.  The solver was set to search for the true optimal solution for the first 

two minutes of solving.  If, after those two minutes, the true optimal solution was not 

found, feasible solutions found within at least 0.2% of the Linear Program Relaxation 

lower bound were reported as globally optimal.  Other LINGO 13 settings used in this 

analysis are available in Appendix A. 

Recall from Chapter III that the TDM and RTDM unnecessarily index cycle 

parameters across requirement number  n   , as requirement numbers have no impact on 

the cycle value itself.  Because the ITDM addresses this, ITDM cycle inputs are not 

indexed over the requirement number.  Thus, two different cycle inputs are used in 
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testing depending upon the model being implemented.  However, cycle parameters for 

the ITDM were matched to align with the cycle parameters used in the TDM and RTDM.  

Therefore, comparisons between models remain sound. 

Model Testing 

In this analysis, each model (TDM, RTDM, ITDM) was tested on three different 

test cases.  The first two test cases were entirely notional, while the third test case was a 

large-scale problem with data typical of an actual TPFDD.  In all cases, solutions were 

found in less than 3 minutes, and small test cases (i.e. Test Cases 1 and 2) solved in less 

than a second.  

For each test case, solution information regarding the number of air, road, and rail 

vehicle allocations made to requirements was collected. This information is drawn 

directly from the nonzero vehicle decision variables.  For example,  

, , , 130,4 3KUHE KUHA Air Cx     , implying that 3 C-130s are needed on day 4 to deliver 

requirements from KUHE to KUHA, means that three vehicle allocations are made.  Note 

that if the cycle value with matching tuple to this decision variable is greater than 1, more 

than one pickup and delivery is conducted with this allocation.  For example, if 

, , , 130 2KUHE KUHA Air Cw     , then the three vehicle allocations actually imply six pickup and 

deliveries were made.  Approximate Capacity Utilization values were also collected 

during testing. 

Problem size information such as number of variables (integer and continuous) 

and number of constraints were also recorded.  Potential vehicle beddowns derived from 

vehicle allocations are developed for the large scale solutions found in Test Case 3.   

Also, an example of how different inputs can be utilized to model policy decisions is 
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shown using the ITDM.  Lastly, model solutions are compared when the aggregation of 

like requirements is conducted before optimization. 

In all tests, it was assumed that requirements arrived at the POD on the EAD 

stated in the TPFDD.  Thus, for each requirement,  nad   is set to the requirement’s EAD.  

Additionally, every requirement was given a single extension day within all test cases.  

That is,  1nqd    for all requirements. 

Test Case 1.   

The first test case utilized the exact TPFDD and data used as an example in the 

internal research paper by Longhorn & Kovich (2012).  The TPFDD for this case listed 

16 movement requirements, two PODs, and two Destinations.  The TPFDD is shown 

below in Table 13.  Note that the Short Tons column gives the  
nijr   values, the EAD 

column gives the  nad   values, and the RDD column gives the  nrd   values.  Note also 

that the possible delivery Days, including extension days, (i.e. the set  V   ) ranged 

between Day 3 and Day 10.  Three modes (Air, Rail, Road) and three vehicle Types 

(C-130, M1083, and DODX) were utilized.  The penalty per day per late vehicle 

(TDM/RTDM) and penalty per day per short ton (ITDM) was set to  1,000,000g    .  

The payload, cost, outloading , unloading, and cycle parameters used are shown in 

Appendix B. 
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Table 13.  TPFDD for Test Case 1 

 
 

 

 

After the TDM, RTDM, and ITDM were all tested on this case, the model outputs 

and statistics were collected, which appear below in Table 14 and Table 15.  The solution 

information parsed from nonzero decision variables for Test Case 1 is shown in Figure 4 

and Figure 5 with late vehicles/requirements highlighted. 

 

Table 14.  Test Case 1 Model Results 

 

 

Requirement POD Destination Short Tons EAD RDD

1 i1 j1 500 2 4

2 i1 j1 250 3 5

3 i1 j1 750 4 6

4 i1 j1 200 5 7

5 i1 j1 100 6 8

6 i1 j2 600 2 5

7 i1 j2 400 3 6

8 i1 j2 200 4 7

9 i1 j2 300 5 8

10 i1 j2 500 6 9

11 i2 j1 500 4 5

12 i2 j1 400 5 6

13 i2 j1 300 6 7

14 i2 j2 1000 3 5

15 i2 j2 200 5 7

16 i2 j2 500 7 9

Model

Total 

Vehicles 

Allocated

Air Vehicles 

Allocated

Road 

Vehicles 

Allocated

Rail 

Vehicles 

Allocated

ACU
1

Late 

Vehicles
2

Late Short 

Tons
3

TDM 166 41 94 31 97.0% 6 N/A

RTDM 166 41 94 31 97.0% 6 N/A

ITDM 161 41 90 30 99.7% N/A 205

1
Approximate Capacity Utilization

2
TDM and RTDM only

3
ITDM only
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Table 15.  Test Case 1 Model Statistics 

 

 

Note that the TDM and RTDM yield the same solution and model outputs.  This 

is to be expected, as the models are conceptually the same.  Meanwhile, the ITDM 

showed that five fewer vehicle allocations are actually necessary to move the TPFDD 

requirements.  Thus the ITDM has a higher ACU than the TDM and RTDM.  Although 

the two models output the same solution, the RTDM has much fewer constraints and 

variables than the TDM, yielding 33.5% and 97.8% reductions respectively.  Meanwhile, 

the mixed integer ITDM offers a 1.3% decrease in constraints and a 96.7% decrease in 

variables. 

Regarding the physical network, the model solutions indicate that some 

requirements simply cannot be entirely delivered on time.  The TDM/RTDM report 6 

vehicle allocations will arrive late, delivering Requirements 3 and 12.  The ITDM reports 

that 205 short tons, comprised of parts of Requirements 3 and 12, will arrive beyond the 

RDD.  Late requirements and vehicles are easily identified by comparing a requirement’s  

nrd   to the  v   index of corresponding  
nijmkvx   for the TDM/RTDM and  

nijmkvy   for the 

ITDM.  

 

Model
Objective 

Value
Constraints

Total 

Variables

Integer 

Variables

Continuous 

Variables

TDM 6,419,431      160 4608 4608 -

RTDM 6,419,431      106 100 100 -

ITDM 205,419,030   158 152 52 100
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Figure 4.  TDM/RTDM Case 1 Solution 

  

Requirement 1   leaving POD I1  for  destination J1  requires 4 C130(s) (AIR)  on  day 3

Requirement 1   leaving POD I1  for  destination J1  requires 12 M1083(s) (ROAD)  on  day 3

Requirement 1   leaving POD I1  for  destination J1  requires 9 M1083(s) (ROAD)  on  day 4

Requirement 2   leaving POD I1  for  destination J1  requires 4 C130(s) (AIR)  on  day 4

Requirement 2   leaving POD I1  for  destination J1  requires 4 M1083(s) (ROAD)  on  day 4

Requirement 3   leaving POD I1  for  destination J1  requires 4 C130(s) (AIR)  on  day 5

Requirement 3   leaving POD I1  for  destination J1  requires 5 C130(s) (AIR)  on  day 6

Requirement 3   leaving POD I1  for  destination J1  requires 3 C130(s) (AIR)  on  day 7

Requirement 3   leaving POD I1  for  destination J1  requires 2 M1083(s) (ROAD)  on  day 5

Requirement 3   leaving POD I1  for  destination J1  requires 10 M1083(s) (ROAD)  on  day 6

Requirement 4   leaving POD I1  for  destination J1  requires 2 C130(s) (AIR)  on  day 7

Requirement 4   leaving POD I1  for  destination J1  requires 7 M1083(s) (ROAD)  on  day 7

Requirement 5   leaving POD I1  for  destination J1  requires 7 M1083(s) (ROAD)  on  day 8

Requirement 6   leaving POD I1  for  destination J2  requires 3 DODX(s) (RAIL)  on  day 3

Requirement 6   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 4

Requirement 6   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 5

Requirement 7   leaving POD I1  for  destination J2  requires 3 DODX(s) (RAIL)  on  day 6

Requirement 8   leaving POD I1  for  destination J2  requires 2 DODX(s) (RAIL)  on  day 7

Requirement 9   leaving POD I1  for  destination J2  requires 3 M1083(s) (ROAD)  on  day 6

Requirement 9   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 7

Requirement 9   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 8

Requirement 10   leaving POD I1  for  destination J2  requires 2 DODX(s) (RAIL)  on  day 8

Requirement 10   leaving POD I1  for  destination J2  requires 2 DODX(s) (RAIL)  on  day 9

Requirement 11   leaving POD I2  for  destination J1  requires 7 C130(s) (AIR)  on  day 5

Requirement 11   leaving POD I2  for  destination J1  requires 11 M1083(s) (ROAD)  on  day 5

Requirement 12   leaving POD I2  for  destination J1  requires 6 C130(s) (AIR)  on  day 6

Requirement 12   leaving POD I2  for  destination J1  requires 1 C130(s) (AIR)  on  day 7

Requirement 12   leaving POD I2  for  destination J1  requires 3 M1083(s) (ROAD)  on  day 6

Requirement 12   leaving POD I2  for  destination J1  requires 2 M1083(s) (ROAD)  on  day 7

Requirement 13   leaving POD I2  for  destination J1  requires 5 C130(s) (AIR)  on  day 7

Requirement 13   leaving POD I2  for  destination J1  requires 4 M1083(s) (ROAD)  on  day 7

Requirement 14   leaving POD I2  for  destination J2  requires 12 M1083(s) (ROAD)  on  day 4

Requirement 14   leaving POD I2  for  destination J2  requires 8 M1083(s) (ROAD)  on  day 5

Requirement 14   leaving POD I2  for  destination J2  requires 4 DODX(s) (RAIL)  on  day 4

Requirement 14   leaving POD I2  for  destination J2  requires 4 DODX(s) (RAIL)  on  day 5

Requirement 15   leaving POD I2  for  destination J2  requires 2 DODX(s) (RAIL)  on  day 6

Requirement 16   leaving POD I2  for  destination J2  requires 2 DODX(s) (RAIL)  on  day 8

Requirement 16   leaving POD I2  for  destination J2  requires 3 DODX(s) (RAIL)  on  day 9
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Figure 5.  ITDM Case 1 Solution 

 

3 C130(s)   leaving POD I1  for  destination J1  on  day 3 (AIR)

144.00 Short Tons of Requirement 1

5 C130(s)   leaving POD I1  for  destination J1  on  day 4 (AIR)

181.40 Short Tons of Requirement 1

58.60 Short Tons of Requirement 2

4 C130(s)   leaving POD I1  for  destination J1  on  day 5 (AIR)

192.00 Short Tons of Requirement 3

4 C130(s)   leaving POD I1  for  destination J1  on  day 6 (AIR)

192.00 Short Tons of Requirement 3

4 C130(s)   leaving POD I1  for  destination J1  on  day 7 (AIR)

176.00 Short Tons of Requirement 4

10.00 Short Tons of Requirement 5

7 C130(s)   leaving POD I2  for  destination J1  on  day 5 (AIR)

336.00 Short Tons of Requirement 11

7 C130(s)   leaving POD I2  for  destination J1  on  day 6 (AIR)

336.00 Short Tons of Requirement 12

7 C130(s)   leaving POD I2  for  destination J1  on  day 7 (AIR)

64.00 Short Tons of Requirement 12

270.00 Short Tons of Requirement 13

3 DODX(s)   leaving POD I1  for  destination J2  on  day 3 (RAIL)

400.00 Short Tons of Requirement 6

1 DODX(s)   leaving POD I1  for  destination J2  on  day 4 (RAIL)

133.33 Short Tons of Requirement 6

1 DODX(s)   leaving POD I1  for  destination J2  on  day 5 (RAIL)

66.67 Short Tons of Requirement 6

66.67 Short Tons of Requirement 8

3 DODX(s)   leaving POD I1  for  destination J2  on  day 6 (RAIL)

400.00 Short Tons of Requirement 7

2 DODX(s)   leaving POD I1  for  destination J2  on  day 7 (RAIL)

133.33 Short Tons of Requirement 8

133.33 Short Tons of Requirement 9

2 DODX(s)   leaving POD I1  for  destination J2  on  day 8 (RAIL)

166.67 Short Tons of Requirement 9

100.00 Short Tons of Requirement 10

3 DODX(s)   leaving POD I1  for  destination J2  on  day 9 (RAIL)

400.00 Short Tons of Requirement 10

4 DODX(s)   leaving POD I2  for  destination J2  on  day 4 (RAIL)

400.00 Short Tons of Requirement 14

4 DODX(s)   leaving POD I2  for  destination J2  on  day 5 (RAIL)

400.00 Short Tons of Requirement 14

2 DODX(s)   leaving POD I2  for  destination J2  on  day 6 (RAIL)

200.00 Short Tons of Requirement 15

3 DODX(s)   leaving POD I2  for  destination J2  on  day 8 (RAIL)

300.00 Short Tons of Requirement 16

2 DODX(s)   leaving POD I2  for  destination J2  on  day 9 (RAIL)

200.00 Short Tons of Requirement 16

12 M1083(s)   leaving POD I1  for  destination J1  on  day 3 (ROAD)

180.00 Short Tons of Requirement 1

13 M1083(s)   leaving POD I1  for  destination J1  on  day 4 (ROAD)

3.60 Short Tons of Requirement 1

191.40 Short Tons of Requirement 2

2 M1083(s)   leaving POD I1  for  destination J1  on  day 5 (ROAD)

30.00 Short Tons of Requirement 3

13 M1083(s)   leaving POD I1  for  destination J1  on  day 6 (ROAD)

195.00 Short Tons of Requirement 3

11 M1083(s)   leaving POD I1  for  destination J1  on  day 7 (ROAD)

141.00 Short Tons of Requirement 3

24.00 Short Tons of Requirement 4

6 M1083(s)   leaving POD I1  for  destination J1  on  day 8 (ROAD)

90.00 Short Tons of Requirement 5

20 M1083(s)   leaving POD I2  for  destination J2  on  day 4 (ROAD)

200.00 Short Tons of Requirement 14

11 M1083(s)   leaving POD I2  for  destination J1  on  day 5 (ROAD)

165.00 Short Tons of Requirement 11

2 M1083(s)   leaving POD I2  for  destination J1  on  day 7 (ROAD)

30.00 Short Tons of Requirement 13
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 Figure 4 shows the vehicle allocations determined by the model by parsing 

through the nonzero decision variables and their indices.  In the RTDM solution, each 

requirement is allocated a number of different vehicles.  In the ITDM solution, vehicle 

allocations are made to POD Destination pairs for specific days which support the 

delivery of different requirements.  Figure 5 demonstrates this principal with the vehicle 

allocations on the left-hand side and the different requirements the model has allocated to 

flow on those vehicles on the right-hand side. 

Test Case 2.   

The second test case utilized a modified version of the TPFFD utilized in Test 

Case 1.   The Case 2 TPFDD is shown below in Table 16.  The difference between the 

two TPFDDs is a result of two distinct changes.  Firstly, the short tonnage for each 

requirement has been set to 1 short ton.  Secondly, delivery windows were constructed 

such that an intersection of at least one day exists for requirements within each 

POD/Destination pair.  For example, notice that Requirements 1 through 5 all are to be 

delivered from 1i  to 1j  and each requirement could be delivered on-time on Day 6. 
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Table 16.  TPFDD for Test Case 2 

 
 

 

 

All input parameter values remain unchanged from Test Case 1 and are available 

in Appendix B.  Using these inputs, the TDM, RTDM, and ITDM were all tested.  The 

outputs and statistics from each model are depicted in Table 17 and Table 18.  The 

solution information parsed from nonzero decision variables for Test Case 1 is shown in 

Figure 6 and Figure 7. 

 

 

Requirement POD Destination Short Tons EAD RDD

1 i1 j1 1 2 6

2 i1 j1 1 3 6

3 i1 j1 1 4 6

4 i1 j1 1 5 7

5 i1 j1 1 5 8

6 i1 j2 1 2 7

7 i1 j2 1 3 7

8 i1 j2 1 4 7

9 i1 j2 1 5 8

10 i1 j2 1 6 9

11 i2 j1 1 4 8

12 i2 j1 1 5 8

13 i2 j1 1 6 8

14 i2 j2 1 3 9

15 i2 j2 1 5 8

16 i2 j2 1 7 9
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Table 17.  Test Case 2 Model Results 

 

 

 

 

Table 18.  Test Case 2 Model Statistics 

 

 

Note that in this test case, the inherent modeling differences between the 

TDM/RTDM and ITDM yield drastically different outputs.  The TDM/RTDM find that 

16 vehicle allocations are needed to deliver the requirements.  However, the ITDM finds 

that the same requirements could be delivered with only four vehicle allocations.  Note 

that four vehicles is the minimum allocation possible, as there are four separate 

POD/Destination pairs in the TPFDD.  The ITDM has the higher ACU.  Regarding model 

statistics, as seen in Test Case 1, both the ITDM and RTDM have greatly reduced 

variables when compared to the TDM. 

 

 

Model

Total 

Vehicles 

Allocated

Air Vehicles 

Allocated

Road 

Vehicles 

Allocated

Rail 

Vehicles 

Allocated

ACU
1

Late 

Vehicles
2

Late Short 

Tons
3

TDM 16 0 8 8 1.5% - N/A

RTDM 16 0 8 8 1.5% - N/A

ITDM 4 0 2 2 6.1% N/A -

1
Approximate Capacity Utilization

2
TDM and RTDM only

3
ITDM only

Model
Objective 

Value
Constraints

Total 

Variables

Integer 

Variables

Continuous 

Variables

TDM 808 160 4608 4608 -

RTDM 808 106 136 136 -

ITDM 202 160 190 54 136
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Figure 6.  TDM/RTDM Case 2 Solution 

 

 

 

 

Figure 7.  ITDM Case 2 Solution 

 

 

 

Test Case 3. 

The third test case utilized a sample portion of a large-scale TPFDD acquired 

from USTRANSCOM.  The TPFDD was inspected and certain requirements, such as 

Requirement 1   leaving POD I1  for  destination J1  requires 1 M1083(s) (ROAD)  on  day 6

Requirement 2   leaving POD I1  for  destination J1  requires 1 M1083(s) (ROAD)  on  day 6

Requirement 3   leaving POD I1  for  destination J1  requires 1 M1083(s) (ROAD)  on  day 6

Requirement 4   leaving POD I1  for  destination J1  requires 1 M1083(s) (ROAD)  on  day 7

Requirement 5   leaving POD I1  for  destination J1  requires 1 M1083(s) (ROAD)  on  day 8

Requirement 6   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 5

Requirement 7   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 5

Requirement 8   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 5

Requirement 9   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 8

Requirement 10   leaving POD I1  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 9

Requirement 11   leaving POD I2  for  destination J1  requires 1 M1083(s) (ROAD)  on  day 8

Requirement 12   leaving POD I2  for  destination J1  requires 1 M1083(s) (ROAD)  on  day 8

Requirement 13   leaving POD I2  for  destination J1  requires 1 M1083(s) (ROAD)  on  day 8

Requirement 14   leaving POD I2  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 6

Requirement 15   leaving POD I2  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 6

Requirement 16   leaving POD I2  for  destination J2  requires 1 DODX(s) (RAIL)  on  day 9

1 DODX(s)   leaving POD I1  for  destination J2  on  day 7 (RAIL)

1.00 Short Tons of Requirement 6

1.00 Short Tons of Requirement 7

1.00 Short Tons of Requirement 8

1.00 Short Tons of Requirement 9

1.00 Short Tons of Requirement 10

1 DODX(s)   leaving POD I2  for  destination J2  on  day 8 (RAIL)

1.00 Short Tons of Requirement 14

1.00 Short Tons of Requirement 15

1.00 Short Tons of Requirement 16

1 M1083(s)   leaving POD I1  for  destination J1  on  day 6 (ROAD)

1.00 Short Tons of Requirement 1

1.00 Short Tons of Requirement 2

1.00 Short Tons of Requirement 3

1.00 Short Tons of Requirement 4

1.00 Short Tons of Requirement 5

1 M1083(s)   leaving POD I2  for  destination J1  on  day 7 (ROAD)

1.00 Short Tons of Requirement 11

1.00 Short Tons of Requirement 12

1.00 Short Tons of Requirement 13
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passenger-only requirements, were removed or modified to ensure a complete data set 

where all requirements had positive short tons values and had a POD that was different 

from the Destination.  After adjustment, the TPFDD contained 4,426 requirements, which 

totaled 872,667.2 short tons.  See Appendix C for information on obtaining this TPFDD. 

The TPFDD listed 10 different PODs and 13 Destinations.  Three Modes were 

utilized (Air, Rail, Road), with 3 different vehicle Types for each Mode resulting in 9 

total vehicle Types.  Possible delivery Days ranged from Day 1 to Day 296.  The payload 

and cost parameters are located below in Table 19.  Note that the DODX train is both the 

cheapest and largest capacity vehicle.   

 

 

Table 19.  Vehicle Parameters for Test Case 3 

 
 

 

 

POD and Destination outloading and unloading capacities were made arbitrarily 

high, with  250imv jmvo u    for all appropriate tuples.  Likewise, all cycle values were 

set arbitrarily high to  3nijmkw    (TDM/RTDM) and  3ijmkw    (ITDM).  This implies 

Type Average Payload 

(Short Tons)

Daily Cost

C130 12 100

C17 35 101

C5 60 102

HEMTT 7 11

M1083 5 10

M35 8 12

DODX 200 1

FTTX 150 2

ITTX 180 3

kp
kb
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that any vehicle can make three trips between its POD and Destination daily.  The penalty 

per day per late vehicle (TDM/RTDM) and penalty per day per short ton (ITDM) was set 

to  10,000g    .  The results of Test Case 3 are located below in Table 20 and Table 21.   

For complete solution outputs, please reference Appendix C. 

 

Table 20.  Test Case 3 Model Results 

 

 
 

 

Table 21.  Test Case 3 Model Statistics 

 
 

 

 

Note that the TDM could not be successfully tested in this case, though the 

number of decision variables may be manually calculated.  The TDM integer program 

was successfully developed utilizing VBA, however, LINGO 13 could not compile 

and/or solve the integer program with its more than 4.3 billion decision variables.  

However, as the RTDM is the same model conceptually, and produces the same solutions 

Model

Total 

Vehicles 

Allocated

Air Vehicles 

Allocated

Road Vehicles 

Allocated

Rail Vehicles 

Allocated
ACU

1
Late 

Vehicles
2

Late Short 

Tons
3

TDM

RTDM 5,159 0 0 5,159 28.2% 2 N/A

ITDM 1,476 0 0 1,476 98.5% N/A 13.5

Model

Total 

Vehicles 

Allocated

Air Vehicles 

Allocated

Road 

Vehicles 

Allocated

Rail 

Vehicles 

Allocated

ACU
1

Late 

Vehicles
2

Late Short 

Tons
3

TDM 16 0 8 8 1.5% - N/A

RTDM 16 0 8 8 1.5% - N/A

ITDM 4 0 2 2 6.1% N/A -

1
Approximate Capacity Utilization

2
TDM and RTDM only

3
ITDM only

Model
Objective 

Value
Constraints Total Variables

Integer 

Variables

Continuous 

Variables

TDM 4,390,644,960 4,390,644,960 -

RTDM 25,159 7,673 714,321 714,321 -

ITDM 136,476 15,104 721,863 7,542 714,321
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as demonstrated in Test Cases 1 and 2, it is assumed that the TDM, with enough 

computing power, would eventually arrive at the same solution as the RTDM. 

An all DODX train solution is obtained by both models.  As was seen with the 

first two test cases, the ITDM finds that fewer vehicle allocations are necessary to move 

the requirements than are reported by the RTDM.  Additionally, over 70% more capacity 

is utilized by ITDM vehicle allocations compared to the RTDM. 

Both the RTDM and ITDM report that vehicles carrying requirements 223 and 

231 arrive at the destination late.  In terms of model statistics, both the RTDM and ITDM 

offer a reduction in decision variables greater than 99.9%.  Due to linking constraints, the 

ITDM actually has more constraints than the RTDM.  However, the problem remains 

very tractable. 

Determining a Vehicle Beddown 

 As discussed in Chapter III, it is possible to determine potential vehicle beddowns 

at the PODs by analyzing the model outputs on vehicle allocations.  To demonstrate the 

use of the formulae in (27) and (28), the vehicle beddowns from the large scale Test Case 

3 for both the RTDM and ITDM are given below in Table 22.  Note that in Test Case 3, 

an integer cycle value was utilized, and therefore the measure is applicable as it is 

assumed any vehicle utilized on any day will be available in following days. 

 

Table 22.  Beddowns of Mode Rail, Type DODX vehicles by POD for Test Case 3 

 

 

Model ARKJ AZTG FUQN HNTK HNTS KUHE TMKH TYFR VKNP YVGQ TOTAL

RTDM 3 83 13 2 47 83 3 14 55 83 386

ITDM 1 82 2 1 30 74 1 12 54 29 286
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Note that the beddowns at each POD for Mode Rail, Type DODX vehicles are 

inherently larger with the RTDM than the ITDM.  This follows from the fact that the 

RTDM dictates more vehicle allocations than does the ITDM.  Therefore, as the ITDM 

projects less vehicle allocations, the beddowns are also smaller. 

 Limitations exist with this beddown methodology.  For example, if a requirement 

needs ten allocations of a certain vehicle, but has a two day window to accomplish it, 

different beddowns may be derived by the model at the same cost.  If all ten allocations 

are made on the first day, a ten vehicle beddown would be reported.  If five were made on 

the first day, and five on the second day, only a five vehicle beddown would be reported 

as the same five vehicles used on the first day could be used again on the second.  Both 

beddowns, having ten allocations, would both impact the objective function equally.  In 

Chapter V, ideas for further research on investigating beddowns are discussed. 

Policy-Driven Solutions 

To demonstrate how the models are responsive to policy changes encoded into 

model parameter inputs, a slight modification was made to Test Case 3.  As an example, 

consider a scenario in which decision makers decide that road and rail travel will place 

unnecessary harm on ground troops and air solutions are to be encouraged.  Thus, 

operational costs of each aircraft type could be changed to reflect this policy.   In this test, 

the TPFDD from Case 3 is utilized, however, some parameter inputs are modified.  The 

vehicle attributes were changed as shown in Table 23.  Furthermore, outloading and 

unloading settings were changed to  4300imv jmvo u    for all appropriate tuples.  Lastly, 

all cycle values were updated to  43nijmkw    (RTDM) and  43ijmkw    (ITDM).  Note 

that in this test example, the C-130, an air platform, was made to have the lowest cost.  
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The higher outloading, unloading, and cycle values are arbitrary, and likely illogical, but 

allow for a demonstration of an all aircraft solution.  

 

Table 23.  Vehicle Parameters for Policy-Driven Solutions Example 

 

 

As a result of this setup, an all C-130 solution was obtained by both the RTDM 

and ITDM (like Test Case 3, the problem was too large to compile with the TDM).  This 

is a direct result of the fact that C-130s were the cheapest vehicle to select for delivery.  

The RTDM reported an objective of 25,241 with 5,017 C-130 allocations.  The ITDM 

reported an objective of 136,710 with 1,710 C-130 allocations.  These results, paired with 

Test Case 3, demonstrate that users can drive the model towards solutions that are 

consistent with policy directives or other impacting considerations.  Readers interested in 

complete solutions should reference Appendix C. 

 Although not modeled in this research, one could easy redefine the costs such that 

they are based upon attributes other than vehicle Type.  For example, replacing the cost  

Type Average Payload 

(Short Tons)

Daily Cost

C130 12 1

C17 20 2

C5 30 3

HEMTT 7 11

M1083 5 10

M35 8 12

DODX 200 100

FTTX 150 101

ITTX 180 103

kp
kb
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kb   with cost  ikb   would imply a separate operational cost for each POD  i  and vehicle 

Type  k   combination.  With this formulation, similar vehicles departing from different 

PODs may be given different costs.  As seen above, the model would steer towards 

solutions which meet user defined objectives.  If road travel out of a certain POD is 

dangerous, perhaps due to Improvised Explosive Devices, road vehicles leaving this POD 

could be given a higher cost than other road vehicles leaving from safer PODs.  This 

would require more user input.  However, it is one of the many ways in which the costs 

utilized in the objective value could be adapted to meet policy, guidance, or doctrine 

relevant to the situation. 

Aggregation 

Recall from Chapter III that aggregation may be used as a precursor to 

optimization.  That is, aggregation of like requirements with both the same 

POD/Destination pair and EAD/RDD pair may be performed. Test Cases 1 and 2 had no 

such requirements.  However, the aggregation of the TPFDD from Test Case 3 is 

possible.  To see the impact aggregation has on model outputs and statistics, the same 

setup from Test Case 3 was implemented, only with the TPFDD aggregated.  This 

brought the number of requirements from 4,426 down to 148, although the total short 

tonnage of the TPFDD remained unchanged.  Table 24 and Table 25 below show the 

result of the runs.  For full solutions, reference Appendix C. 
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Table 24.  Model Results with Aggregated TPFDD 

 

 

 

Table 25.  Model Statistics with Aggregated TPFDD 

 

 

Note that with aggregation, the ITDM reports 1,476 train allocations (all of which 

were DODX).  This is the exact same number of DODX train allocations given by the 

ITDM in the non-aggregated test run in Case 3.  However, the RTDM reports a reduction 

in the number of allocations, from 5,159 without aggregation to 1,547 with aggregation 

even though the total short tonnage of the TPFDD remains unchanged.  While 

aggregation does lessen the gap between the number of allocations required between the 

RTDM and ITDM, the fact that the number of allocations changes based upon 

aggregation of like requirements in the RTDM is problematic.  Aggregation does lead to 

smaller problem size, as there are less requirements.  Even so, the TDM could not 

generate such a large model.   

Model

Total 

Vehicles 

Allocated

Air Vehicles 

Allocated

Road Vehicles 

Allocated

Rail Vehicles 

Allocated
ACU

1
Late 

Vehicles
2

Late Short 

Tons
3

TDM

RTDM 1,547 0 0 1,547 94.0% 1 N/A

ITDM 1,476 0 0 1,476 98.5% N/A 14

1
Approximate Capacity Utilization

2
TDM and RTDM only

3
ITDM only

Model
Objective 

Value
Constraints Total Variables

Integer 

Variables

Continuous 

Variables

TDM 153,766,080 153,766,080 -

RTDM 11,547 3,395 24,471 24,471 -

ITDM 136,476 10,862 32,013 7,542 24,471
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In both the aggregated and nonaggregated cases, the ITDM achieved an ACU of 

98.5%.  However, even aggregation before optimization with the RTDM does not 

achieve such an ACU.  Recall that in regards to time windows, requirements are 

aggregated only when there are exact matches with time windows.  However, the ITDM 

can allocate requirements with intersecting time windows regardless of whether 

aggregation has been performed or not.  

The result that the ITDM produces the same objective value for any dataset, 

regardless of whether or not aggregation is done, is actually fairly straightforward.  For 

with aggregation, only requirements with the exact same attributes are aggregated, and 

their short tonnage values are summed.  Note within the ITDM, the outloading and 

unloading constraints are not affected by aggregation, because nothing is indexed over 

the requirements n .  However, changes do occur in the objective, linking constraint, and 

requirement constraint.  In the objective (18), rather than summing multiple continuous 

disaggregated requirement flow variables, a continuous flow variable representing 

aggregated flow is in their place.  Likewise, in (22) the LHS summation includes 

continuous aggregated variables rather than multiple individual variables.  For (19), there 

are now different  ( , , )n i j   tuples generating constraints.  The aggregated constraints 

have the aggregated sum on the RHS, and on the LHS, the aggregated continuous flow 

variables replace individual disaggregated variables. 

Verification and Validation 

 As with any model, proper verification and validation must be performed as part 

of the analysis.  Verification seeks to ensure that one is building the model right.  
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Validation focuses on whether or not one is building the right model.  These checks are 

enacted upon the three models discussed in this thesis. 

Verification.   

Verification is conducted on each of the three models by examining the results of 

Test Case 1.  Firstly, as the Test Case 1inputs are drawn directly from Longhorn & 

Kovich (2012), the TDM is easily verified in seeing that, within this research, the TDM 

obtained the same objective value as Longhorn & Kovich did in their research.  Although 

alternate optimal solutions may exist, their solution was replicated.  Furthermore, as the 

RTDM produced the exact same output, the RTDM is verified as well.  The ITDM is 

verified in seeing that similar vehicle allocations were needed, although slight lower 

numbers were seen due to increased ACU values.  Another indication of successful 

verification of the ITDM is that both the TDM/RTDM and ITDM indicated that 

Requirements 3 and 12 would be delivered late, indicating the same bottleneck present in 

the network. 

Validation. 

Test Case 2 offers one reason why the TDM and RTDM cannot be “the right 

model.”  Far too many vehicles are allocated to move the 16 requirements under both the 

TDM and RTDM.  This is what led this research to pursue an alternate modeling 

technique.  With the ITDM, the model avoids the issue of not being allowed to allocate 

vehicles to multiple different requirements.  Additionally, when examining the solutions 

from all Test Cases, lower utilization rates are seen in the TDM and RTDM.  This is 

because the model forces at least one vehicle to be allocated to every requirement, no 

matter how small.  This is a poor modeling construct, and the ITDM averts this dilemma.  
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Further verification of the ITDM is not entirely possible, as results of force flow analysis 

is typically classified.  However, as stated above, the ITDM resolves much of the issues 

seen with the TDM and RTDM. 

The fact that the RTDM solutions are so sensitive to aggregation also 

demonstrates it is not a useful model.  Though the exact same amount of cargo needs to 

be delivered with aggregation, drastic changes in solutions were seen in the aggregation 

testing of the large-scale TPFDD.  Conversely, the ITDM gives the same solution 

whether aggregated or not because its solutions are not sensitive to the actual number of 

requirements, but rather the amount of short tons in the TPFDD. 
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V.  Conclusions and Future Research 
 

Conclusions 

The ITDM is the best model to use in approximating vehicle mixtures for theater 

distribution.  As the TDM, the baseline model, was tested and analyzed, it became quite 

clear that problem sizes would be too large for real world problems.  Thus, the RTDM 

was developed, which solved the problem the same way but only considered relevant 

decision variables and constraints.  However, this reduced model still had deficiencies in 

how requirements were allocated to vehicles, and thus the ITDM was developed to 

address this. 

The ITDM can give force flow analysts great insight into vehicles needed for a 

contingency.  In terms of solution quality, the ITDM is better than the TDM/RTDM as it 

more accurately allocates vehicles to requirements.  The RTDM forces every requirement 

to have at least one vehicle allocated to it.  Even if aggregation is attempted in order to 

reduce the number of requirements, the RTDM still fails to achieve the ACU that is 

accomplished with the ITDM.  This is because aggregation only combines requirements 

with exact time window matches whereas the ITDM can allocate different requirements 

on a single vehicle whenever there is an intersection in the delivery windows of the 

requirements. 

The ITDM is also far smaller in terms of variables and constraints when 

compared to the TDM.  In fact, it was seen that the TDM failed to even generate for 

larger problems.  Because the ITDM has both continuous and integer variables, and an 
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additional linking constraint, it is actually a larger problem than the RTDM.  However, 

this is a tradeoff of no consequence that results in far better solutions.   

Although the ITDM gives the same solutions whether the TPFDD is aggregated 

or not, keeping the TPFDD disaggregated is preferred as it keeps requirements in their 

initial, disaggregated state allowing for better analysis and allowing differing extension 

day values to be input by commanders during analysis.  However, if computing resources 

are scarce, using aggregation before solving the ITDM may be an option. 

Lastly, with appropriate cycle selection, solutions may be post-processed to 

determine approximate vehicle beddowns required at each POD.  These approximate 

vehicle beddowns can provide important answers for force flow analysts.  Thus, rather 

than arbitrarily selecting a vehicle beddown to test in theater distribution simulations, the 

ITDM can help drive feasible solutions.   

The ITDM is able to find feasible vehicle mixtures that minimize operational cost 

and minimize late deliveries.  Because costs are user-defined, solutions may be steered 

towards vehicle mixtures that align with current policy or direction.  By post-processing 

solutions, insights into limitations of the physical network and potential vehicle 

beddowns may be gained.  While the beddown measures may be sensitive to alternate 

optimal solutions, finding beddowns after analysis with the ITDM can provide strong 

starting points as analysts test different vehicle mixtures as part of force flow analysis.  

Through the use of the ITDM and associated Decision Support System tool, force flow 

analysts should be able to provide data input, model generation, solution analysis, and 

solution transfer to simulation tools much faster than current guess and check methods in 

place.  Force flow analysts will be able to receive insight into required vehicle mixtures 
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and beddowns as they plan contingencies.  This use of ITDM to model theater 

distribution has the potential to save many man-hours amongst USTRANSCOM analysts 

and planners. 

Future Research 

There are many possible adjustments to the ITDM formulation which would 

allow further modeling of operational realities.  The greatest potential for bettering force 

flow modeling is to investigate the best way to determine vehicle beddowns.  Through 

the research process, it became clear that actual vehicle beddowns at PODs may be more 

useful outputs for force flow analysts than what the tested models provide which are the 

minimum cost allocations of vehicles to different requirements.  While this thesis 

develops a methodology for measuring approximate vehicle beddowns with the ITDM, 

the beddowns appear to be sensitive to alternate optimal solutions.  Thus, while analysts 

may find such beddowns useful as starting points in distribution analysis, better beddown 

solutions may exist. 

An exploration of how different objectives, including minimizing lateness, 

beddown size, beddown costs, and operational costs, all impact vehicle solutions yielded 

by the models should prove fruitful.  Changing objectives could cause further constraints 

to be introduced into the model.  Tradeoffs exist within these different objectives, and 

thus solutions may be impacted depending on which objectives are included, as well as 

any possible weighting assigned to objectives.  Investigating this multiobjective problem, 

and determining which objectives and measures provide proper beddowns as needed by 

USTRANSCOM is a practical next step for research. 
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Another way to improve the ITDM would be to introduce a multi-commodity 

flow approach.  The ITDM currently can allocate any vehicle to any requirement’s short 

tons.  However, in reality, there are some requirements that cannot go on certain vehicles.  

For example, an M1 tank cannot fit onto M1083 truck.  It could, however, be placed on a 

C-17 aircraft.  Information regarding the type of cargo is easily accessible on a TPFDD 

and therefore, restricting which vehicles may carry each requirement could produce more 

realistic solutions.  TPFDDs also contain passengers (i.e. troops) that need transport into 

the theater.  These could also be modeled as a commodity to be allocated to passenger 

vehicles. 

Modeling could also be expanded to include all three legs of the distribution 

process.  In other words, a model could show the flow of troops and materiel from home 

base to POE to POD to Destination.  This would greatly increase the number of variables 

and would likely require the use of heuristics.   

Lastly, further research into defining cycles should be conducted.  Rather than 

relying on user-input, a tool could be developed to calculate the greatest circular distance 

(or other measure) between a POD and Destination and then, taking into consideration 

vehicle speeds, outload/unload times, and other operational capabilities, report back a 

particular cycle value.  Furthermore, research into how to address noninteger cycle values 

should be considered.  As it stands now, a noninteger cycle value gives an imprecise 

location of vehicles between days. 
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Appendix A.  LINGO 13 Settings File Contents 
 

 

The LINGO.CNF file contains settings which have been changed from their 

default values within LINGO 13.  The contents of the LINGO.CNF file as utilized in this 

thesis appear below.   

 

Lingo CNF info: 

! LINGO Custom Configuration Data: 

MXMEMB=  25000 

ABSINT=  0.10000000E-11 

IPTOLR=  0.20000000E-02 

TIM2RL=  120 

LINLEN=  150 

DUALCO=  0 

PRECIS=  12 
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Appendix B.  Additional Model Inputs for Test Case 1 and Test Case 2 
 

 

Table 26.  Vehicle Parameters for Test Cases 1 and 2 

 
 

 

 

Table 27.  Outloading Parameters for Test Cases 1 and 2 

 
*Note, for each POD/Mode pair, the outload capacity is assumed constant for all days v . 

 

 

 

Table 28.  Unloading Parameters for Test Cases 1 and 2 

 
*Note, for each Destination/Mode pair, the outload capacity is assumed constant for all 

days v . 

 

Type Average Payload Daily Cost

C130 12 10000

M1083 5 100

DODX 200 1

kp
kb

POD Mode Outload Capacity 

i1 Air 20

Road 50

Rail 2

i2 Air 28

Road 50

Rail 2

imvo

Destination Mode Unload Capacity

j1 Air 44

Road 40

Rail 0

j2 Air 0

Road 60

Rail 3

jmvu
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Table 29.  Cycle Values for Test Cases 1 and 2 (TDM/RTDM Only) 

 
*Note, while the RTDM does not consider illogical tuples (e.g. with Mode Rail, Type C-

130), the TDM does and all such illogical cycle values (not shown) are set to 0.  

Movement POD Destination Mode Type Cycles

1 i1 j1 AIR C130 4

1 i1 j1 ROAD M1083 3

1 i1 j1 RAIL DODX 0

2 i1 j1 AIR C130 4

2 i1 j1 ROAD M1083 3

2 i1 j1 RAIL DODX 0

3 i1 j1 AIR C130 4

3 i1 j1 ROAD M1083 3

3 i1 j1 RAIL DODX 0

4 i1 j1 AIR C130 4

4 i1 j1 ROAD M1083 3

4 i1 j1 RAIL DODX 0

5 i1 j1 AIR C130 4

5 i1 j1 ROAD M1083 3

5 i1 j1 RAIL DODX 0

6 i1 j2 AIR C130 0

6 i1 j2 ROAD M1083 2.66666667

6 i1 j2 RAIL DODX 0.66666667

7 i1 j2 AIR C130 0

7 i1 j2 ROAD M1083 2.66666667

7 i1 j2 RAIL DODX 0.66666667

8 i1 j2 AIR C130 0

8 i1 j2 ROAD M1083 2.66666667

8 i1 j2 RAIL DODX 0.66666667

9 i1 j2 AIR C130 0

9 i1 j2 ROAD M1083 2.66666667

9 i1 j2 RAIL DODX 0.66666667

10 i1 j2 AIR C130 0

10 i1 j2 ROAD M1083 2.66666667

10 i1 j2 RAIL DODX 0.66666667

11 i2 j1 AIR C130 4

11 i2 j1 ROAD M1083 3

11 i2 j1 RAIL DODX 0

12 i2 j1 AIR C130 4

12 i2 j1 ROAD M1083 3

12 i2 j1 RAIL DODX 0

13 i2 j1 AIR C130 4

13 i2 j1 ROAD M1083 3

13 i2 j1 RAIL DODX 0

14 i2 j2 AIR C130 0

14 i2 j2 ROAD M1083 2

14 i2 j2 RAIL DODX 0.5

15 i2 j2 AIR C130 0

15 i2 j2 ROAD M1083 2

15 i2 j2 RAIL DODX 0.5

16 i2 j2 AIR C130 0

16 i2 j2 ROAD M1083 2

16 i2 j2 RAIL DODX 0.5

nijmkw
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Table 30.  Cycle Values for Test Cases 1 and 2 (ITDM Only) 

 
  

POD Destination Mode Type Cycles

i1 j1 AIR C130 4

i1 j1 ROAD M1083 3

i1 j1 RAIL DODX 0

i1 j2 AIR C130 0

i1 j2 ROAD M1083 2.66666667

i1 j2 RAIL DODX 0.66666667

i2 j1 AIR C130 4

i2 j1 ROAD M1083 3

i2 j1 RAIL DODX 0

i2 j2 AIR C130 0

i2 j2 ROAD M1083 2

i2 j2 RAIL DODX 0.5

ijmkw
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Appendix C.  TPFDD and Solutions for Test Case 3 
 

 

The large scale TPFDD utilized for this research contained 4,426 requirements, 

resulting in a very lengthy document.  Therefore, those interested in this dataset should 

contact Dr. Jeff Weir, of the Air Force Institute of Technology’s Department of 

Operational Sciences (AFIT/ENS).  Dr. Weir can be reached at jeffery.weir.2@us.af.mil 

or at (937) 255-6565 x4523.  Readers interested in seeing the complete solution outputs 

should do the same. 

 

  

mailto:jeffery.weir.2@us.af.mil
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Appendix D.  Model Coding 
 

 

 The VBA coding utilized in this research to generate the RTDM and ITDM is 

lengthy but available upon request.  The coding of the TDM is available as well.  Readers 

interested in obtaining the code should contact Dr. Jeff Weir, of the Air Force Institute of 

Technology’s Department of Operational Sciences (AFIT/ENS).  Dr. Weir can be 

reached at jeffery.weir.2@us.af.mil or at (937) 255-6565 x4523. 

  

mailto:jeffery.weir.2@us.af.mil
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Appendix E.  Research Summary Chart 
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